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Chapter 1

Introduction

This thesis results from the wish to connect two interesting parts of mathematics,
proof theory and projective geometry. We applied theoretic methods of proof the-
ory to projective geometry. This should be another try to span the gap between
theoretical and applied mathematics. The gap arises from the fact, that “applied
mathematicians” don’t want to use the methods of proof theory, because these
are highly formal and syntactical, and logicians don’t think that it is necessary
to apply their theoretical framework.

Besides the natural numbers in form of the Peano arithmetic, which are sub-
ject to various forms of analysis before and after Gédels historic work [5] on the
incompleteness of Peano arithmetic, the geometry was used for logical analysis
for many years. For instance Hilbert put up an axiom system for Euclidean ge-
ometry (cf. [6]), and many analyses followed. But most logicians stayed to these
classical fields (c.f. [12]) and to my knowledge there is no analysis of projective
geometry, although the projective geometry happens to be in an already axiom-
atized form (see 2.2 for details). There are analyses on mechanical proving in
special geometries (c.f. [17]), but these analyses restrict themselves to the case of
geometries which can be coordinatized. This yields a decision procedure, since
the real closed fields can be decided (c.f. [16]), while “pure” projective geometry
cannot be coordinatized.!

By the following thesis we hope to open up a new field of research for logicians
and mathematicians to better understand the properties of projective geometry.

'But there where some other interesting approaches to applied mathematics by logical
means. One of these approaches is Gaisi Takeutis “A Conservative Extension of Peano
Arithmetic”[14]. Other applications of logic can be found in fuzzy logic, knowledge based
systems and various other fields.



Chapter 2

Projective Geometry

In this chapter we will first make a tour through the history of geometry and its
foundation in logic (cf. 2.1), next we will give a definition of projective geometry
(cf. 2.2), then we will present examples of projective planes (cf. 2.3), furthermore
we will discuss the connection between the “reality” of projective planes and
the axiomatic theory (cf. 2.4) and finally we will present some consequences of
the axioms for projective geometry (cf. 2.5). For a good textbook on projective
geometry see [3].

2.1 Historical Background

The earliest systematic method used in the study of geometry was the deductive
axiomatic method introduced by the Greeks. Thales (640-546 B.C.) is generally
considered to be the first to treat geometry as a logical structure. In the next
300 years much geometric knowledge was developed. Then Euclid (¢. 300 B.C.)
collected and systematized all the geometry previously created. He did this by
starting out with a set of axioms, statements to be accepted as “true”, from which
all theorems were deduced as logical consequences (cf. app. A).

Though the Greek realized the need for axioms, they did not seem to find
a logical need for undefined terms. Euclid therefore attempted to define every-
thing (cf. A.1). The assumptions which Euclid used in his proofs were not all
stated explicitly. For example, there is nothing in Euclid’s axioms from which
we can deduce that an angle bisector of a triangle will intersect the opposite
side. Further, where constructions demand the intersection of two circles, or of
a line and a circle, Euclid simply assumed the existence of the needed points
of intersection. Though there were attempts to improve on Euclid’s definitions
and axioms, nevertheless, Euclid reigned supreme until the 19th century. Then
came the discovery of non-Euclidean geometry and with it a re-examination of
the foundations of Euclidean geometry.
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2.1.1 The Euclidean Axiom of Parallelism

The first four of Euclid’s axioms (cf. A.2) were accepted as simple and “obvious”.
The fifth, however, was not. FEuclid proved his 28 propositions without using the
fifth axiom. For 2000 years mathematicians tried to prove this axiom; i.e., tried
to deduce it from the other axioms and the first 28 propositions. But they only
succeeded in replacing it by various equivalent assumptions.

In the 19th century the conclusion was reached that not only could the par-
allel postulate not be proved, but that a logical system of geometry could be
constructed without its use. Up to this point no one thought of arguing against
the “truth” of Euclid’s parallel postulate. But in the 19th century the founders of
non-Euclidean geometry—Carl Friedrich Gauss (1777-1855), Nicolai Ivanovitch
Lobachevsky (1793-1856), and Johann Bolyai (1802-1860)—concluded indepen-
dently that a consistent geometry denying Euclid’s parallel postulate could be
set up.

Gauss, from 1792 to 1813, tried to prove Euclid’s parallel postulate, but after
1813 his letters show that he had overcome the usual prejudice and developed
a non-Euclidean geometry. But, fearing ridicule and controversy, he kept these
revolutionary ideas to himself, except for letters to his friends. Lobachevsky and
Bolyai were the first to publish expositions of the new geometry, Lobachevsky in
1829 and Bolyai in 1832. This geometry is known today as Hyperbolic Geom-
etry. In 1854 Bernhard Riemann (1826-1866) developed another non-Euclidean
geometry, known as Elliptic Geometry.

2.1.2 Hilbert and the new approach to Geometry

The next great step in the development of the logic of geometry was the break
with the long hold tradition of defining everything mathematics or geometry
speak about. It’s not easy to see the great step, but the fact of treating Points and
Lines as primitives dispenses you of the awful duty to define Points as “impartable
objects”, “the entity in space” and all the other interesting definitions Greek
philosophers invented. Only a few undefined objects and relations are assumed
as primitives and the axioms determine the “behavior” of them.

Though defects in Euclid’s logical structure were pointed out earlier, it was
not until after the discovery of non-Euclidean geometry that mathematicians be-
gan carefully scrutinizing the foundations of Euclidean geometry and formulating
precise sets of axioms for it. The problem was to erect the entire structure of
Euclidean geometry upon the simplest foundation possible; i.e., to choose a mini-
mum number of undefined elements and relations and a set of axioms concerning
them, with the property that all of Euclidean geometry can be logically deduced
from these without any further appeal to intuition. There were many such axiom
sets formulated at the end of the 19th century beginning with the work of Pasch
(1882), known for the Pasch Axiom, Peano (1889), primary known for his axiom-
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atization of the natural numbers—the Peano Arithmetic—and Pieri (1899) and
culminating with the famous set by David Hilbert (1899, cf. app. B and [6]).

The roots of projective geometry can be traced back to ancient Greeks who
knew some of the theorems as part of Euclidean geometry. Its formal devel-
opment probably started in the 15th century by artists who were looking for a
theory of perspective drawing; i.e., the laws of constructing the projections of
three-dimensional objects on a two-dimensional plane. The theory was extended
by Desargues (1593-1662), an engineer and architect who, in 1639, published a
treatise on conic sections using the concept of projection. It was here that Desar-
gues used the idea of adding one point “at infinity” to each line with the locus of
these “ideal points” forming an “ideal line”, added to the Euclidean plane, where
parallel lines were to intersect. However, it was not until Monge (1746-1818),
with his co-workers at the Ecole Polytechnique in Paris, developed his descrip-
tive geometry—the analysis and representation of three-dimensional objects by
means of their projections on different planes—that the study of projective ge-
ometry began to flourish.

Mathematicians classified geometric properties into two categories: metric
properties, which are those concerned with measurements of distances, angles,
and areas, and descriptive properties, which are those concerned with the po-
sitional relations of geometric figures to one another. For example, the length
of a line segment and the congruence of three lines are metric properties, but
the collinearity of three points and the concurrence of three lines are descriptive
properties. In the case of plane figures, descriptive properties are preserved when
a figure is projected from one plane onto another (provided we consider parallel
lines as intersecting at an “ideal point”), while metric properties may not be
preserved. Thus the property of a given curve being a circle is a metric property
but that of its being a conic is a descriptive or projective property.

The beginning of the modern period of the development of projective geometry
is usually placed at 1822 when Poncelet (1788-1867), a pupil of Monge, published
his great treatise on the projective properties of figures, written while he was a
prisoner in Russia. Throughout the 19th century, the subject was developed
rapidly by Gergonne, Brianchon, Pliicker, Steiner, Von Staudt and others.

For the most part, however, projective geometry was developed as an exten-
sion of Euclidean geometry (cf. 2.3.1); e.g., the parallel postulate was still used
and a line was added to the Fuclidean plane to contain the “ideal points” men-
tioned above. It was only at the end of the 19th century and the beginning of
the 20th century, through the work of Felix Klein (1849-1925), Oswald Veblen
(1880-1960), David Hilbert, and others, that projective geometry was seen to be
independent of the theory of parallels. Projective geometry was then developed
as an abstract science based on its own set of axioms.

In the next section we will discuss the properties of projective geometry in
greater detail and we will also see an axiomatization in the sense of Hilbert for
the projective geometry.
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2.2 What is Projective (Geometry

We will now give an axiomatization of projective geometry in the sense of the
previous sections. The projective geometry deals, like the Euclidian geometry,
with points and lines. These two elements are primitives, which aren’t further
defined. Only the axioms tell us about their properties. The axioms for the
projective geometry are very simple, the reason why I chose this geometry for a
proof-theoretic analysis.

Now let me begin with the definition of the projective geometry: There are
two classes of objects, called Points and Lines', and one predicate, that puts up
a relation between Points and Lines, called Incidence.

Furthermore we must give some axioms to express certain properties of Points
and Lines and to specify the behavior of the incidence on Points and Lines:

(PG1) For every two distinct Points there is one and only one Line, so that these
two Points incide with this Line.

(PG2) For every two distinct Lines there is one and only one Point, so that this
Point incides with the two Lines?.

(PG3) There are four Points, which never incide with a Line defined by any of the
three other Points.

The next chapter will present some examples of Projective Planes.

2.3 Examples for Projective Planes

2.3.1 The projective closed Euclidean plane Ilgp

The easiest approach to projective geometry is via the Euclidean plane. If we add
one Point “at infinity” to each line and one “ideal Line”, consisting of all these
“ideal Points”, it follows that two Points determine exactly one Line and two
distinct Lines determine exactly one Point? (cf. 2.1). So the axioms are satisfied.

This projective plane is called IIgp and has a lot of other interesting proper-
ties, especially that it is a classical projective plane.

'We will use the expression “Point” (note the capital P) for the objects of projective ge-
ometry and “points” as usual for e.g. a point in a plane. The same applies to “Line” and
“line”.

2%one and only one” can be replaced by “one”, because the fact that there is not more than
one Point can be proven from axiom (PEL).

3More precise: The “ideal Points” are the congruence classes with respect to the parallel
relation and the “ideal Line” is the class of these congruence classes.
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|

Figure 2.1: “Ideal Points” in [1gp

2.3.2 The projective Desargues-Plane

A very well known property of [Igp is the Desargues’ Theorem. To understand
it, some definitions (cf. fig. 2.2):

DEFINITION 2.1 Two triangles are said to be perspective from a Point O if there
15 a one-to-one correspondence between the vertices so that Lines joining corre-
sponding vertices all go through O. Dually, two triangles are said to be perspec-
tive from a Line o if there is a one-to-one correspondence between the sides of the
triangles such that the Points of intersection of corresponding sides all lie on o.

THEOREM 2.1 (DESARGUES’ THEOREM) If two triangles are perspective from
a Point, then they are perspective from a Line.

0

R/
Figure 2.2: Desargues’ Theorem

Finally an example for a finite Projective Plane:
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2.3.3 The minimal Projective Plane

One of the basic properties of projective planes is the fact, that there are seven
distinct Points. Four Points satisfying axiom (PG3) and the three diagonal Points
([A()B()HC()Do]) = Dl, ([A()Co] [B()D()D = DQ and ([A()Do] [B()CO]) = Dg. If we
can set up a relation of incidence on these Points such as that the axioms (PG1)
and (PG2) are satisfied, then we have a minimal projective plane. Fig. 2.3 defines
such an incidence-table. In this table not only the usual lines are Lines for the
projective geometry, but also the circle.

Co

D,

Ao D, By
Figure 2.3: Incidence Table for the minimal Projective Plane

We could attribute a number called “order”, which is the number of Points on
a Line minus one, to every finite projective plane. Then there is the question for
which number n there is a projective plane with order n. One partial solution for
this problem depends on the existence of finite fields. If we have a finite field, we
can construct a finite projective plane with the same order. Since there are finite
fields for every power of a prime?, for any such number there is also a projective
plane.

Principally these questions can be answered simply by trying all possible
relation tables with n Points and n Lines and look, whether there is one satisfying
the axioms. But this method is much too difficult to do, because the number of

4The so called Galois Field GF(n).
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such tables rises exponentially.

2.4 The Connection between “Reality” and the
Axiomatic Method

The idea behind an axiomatic approach to a mathematical problem is the same as
developing a general formula for the roots of quadratic equations. The generalities
are searched between all the different equations and one solution is given for all
different instances of the one general equation.

The axiomatic (or logic) approach tries to formulate the basic principles of an
idea. Then all the logical conclusions are valid in all instances of the given set of
axioms, in the language of the logician, valid in all models of this set of axioms.

So we can define a projective plane as every structure, such as that the con-
stants, function constants and predicate constants can be interpreted in this
structure and via this interpretation the axioms are true in this structure.

There is one restriction to the facts which can be proven from the axioms:
All facts must be valid in all the models of the three axioms, i.e. also in all the
finite projective planes. Simple consequence from this is that you cannot prove
such as “There are n different objects which satisfy ...”5.

If some certain properties are needed, than they are added as axioms. The
most important ones are the Theorem of Desargues (cf. 2.3.2), the Theorem of
Pappos and a few more. They are important to proof properties of [l 4z (cf. 2.3.1),
e.g. certain properties on conics.

2.5 Some Consequences of the Axioms

e There are seven distinct Points in a projective plane, namely the four con-
stants Ay, ..., Do and the three diagonal Points Dy = ([A¢Bo)[CoDo)), D1 =
([A0Co][BoDo)), D3 = ([AoDol[BoCo).-

For each Line there are three distinct Points which incide with this Line.

For distinct Lines g and h there is a Point P such that PTg and PTh.

There is a one-to-one mapping from the set of Points to the set of Lines in
a projective plane.

If there are exactly n+ 1 distinct Points on a Line, then on every Line there
are n + 1 distinct Points, for each Point there are exactly n + 1 different
Lines passing through it and there are exactly n?+n+ 1 Points and exactly
that much Lines.

SFor the geometers: If n > 7, because in every projective plane there are 7 distinct points.



Chapter 3

Proof Theory

3.1 Introduction to Proof Theory

Logic is the study of reasoning; and mathematical logic is the study of the type
of reasoning done by mathematicians. To discover the proper approach to math-
ematical logic, we must therefore examine the methods of the mathematician.

The conspicuous feature of mathematics, as opposed to other sciences, is
the use of proofs instead of observations. A physicist may prove physical laws
from other physical laws; but he usually regards agreement with observations. A
mathematician may, on occasions, use observations; for example, he may measure
the angles of many triangles and conclude that the sum of the angles is always
180°. However, he will accept this as a law of mathematics only when it has been
proved.

Nevertheless, it is clearly impossible to prove all mathematical laws out of
nothing. Euclid himself overcame the problem of the initial laws in defining ev-
erything, but this is essentially the same. The first laws which one accepts cannot
be proved, since there are no earlier laws from which they can be proved. Hence
we have certain first laws, called axioms, which we accept without proof; the
remaining laws, called theorems, are proved from the axioms. Axioms, theorems
and certain concepts of derivation build up an aziom system (see [13] or [7] for a
good introduction' to mathematical logic).

The study of axioms and theorems as sentences, sequences of glyphs, is called
the syntactical study of axiom systems; the study of the meaning of these sen-
tences is called the semantic study of axiom systems. There are two subfields
of mathematical logic each dedicated to one of this approaches. Model theory
discusses the meaning of axioms and theorems. It is concerned with the semantic
aspect of axiom systems (see [9] for a good introduction to model theory).

On the other hand there is proof theory, which investigates the syntactical
properties of sentences and proofs. Since the proof is the basic derivation concept

I'maybe the best
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of a mathematician, it is interesting to learn what the meaning of a proof is (see
[15] and [4] for good introductions to proof theory).

In a sense, mathematics is a collection of proofs. Therefore, in investigating
“mathematics”, a fruitful method is to formalize proofs of mathematics and in-
vestigate the structure of these proofs. This is what proof theory is concerned
with. So proof theory is mainly concerned with formal syntax: proofs, formulas
and their various generalizations.

From a more abstract point of view proof theory is concerned with the relation
between finite and infinite objects, more precisely, the very nature of what we
are doing:

— when denoting (infinite) mathematical objects by means of (finite) syntac-
tical constructions;

— when proving facts concerning (infinitary) objects by means of (finite)
proofs.

That’s the proof theory in D. Hilbert’s sense. This approach was later devel-
oped by the work of G. Gentzen and followers, the so-called Gentzen-like proof
theory.

There are some other approaches to proof theory. One of these has been
developed by Brouwer, which considers the proofs as the semantic of mathematics,
not the syntax. l.e. a proof of A D B is considered as an instruction how to
construct a proof of B from a proof of A.

We will not give detailed exposition of classical logic, for this see [13],[1],[7]

r [10]. Since we are interested in the relations between proofs and properties of
the proven object, we will follow Gentzen-like proof theory, so ...

3.2 What is Gentzen-like Proof Theory?

The proof theory according to Gentzen is based on the sequent calculus, Gentzen’s
formulation of the first order predicate calculus LK (“logistischer klassischer
Kalkil”).

I will skip the usual formalization of statements, terms, (atomic) formulas,
substitution since they will come at a later stage (see sec. 4) and only mention,
that in this thesis the following logical symbols are used:

= for “not”

A for “and”

V for “or”

D for “implies”

V for “for all”

3 for “there exists”
and that parentheses are used freely for better readability. A detailed exposition
of the formalization can be found in various books on proof theory (e.g. [15], [4]).
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In the following, let Greek capital letters I, A, II, A, 'y, ... denote finite
(possibly empty) sequences of formulas separated by commas.

DEFINITION 3.1 For arbitrary 'and A, I' — A is called a sequent. I"and Aare
called the antecedent and succedent, respectively, of the sequent.

Intuitively, a sequent Ay,...,A,, — Bi,..., B, (where m,n > 1) means: if
AN, . .NA,,, then B1V...VB,. Form > 1, A;,..., A, — means that A;A...ANA,,
yields a contradiction. For n > 1, — By,..., B, means, that By V...V B, holds.
The empty sequent — means there is a contradiction. Sequents will be denoted
by the letter S, with or without subscripts.

DEFINITION 3.2 An inference is an expression of the form

S Sy
S where n =1,2 (ev. 3)

where the S; and S are sequents. The S; are called the upper sequents and S is
called the lower sequent of the inference.

Intuitively this means that when S; are asserted, we can infer S from them.
We restrict ourselves to inferences obtained from the following rules of inferences,
in which A, B, C, D, F(a) denote formulas.

1. Structural rules:

(a) Weakening:

r—-4a (W:left) LA (W:right)

m I — A,D
D is called the weakening formula.
(b) Contraction:
D,D,T'— A I'—-ADD . .
Dr oA (Cleft) i (Caight)
(¢) Exchange:
r,e,D,II—-A I —ACDA .
1"’ D, 071—[ N A (Eleft> F _ A,D,C,A (Erlght)

¢

We will refer to these three kinds of inferences as “weak inferences”, while

all others will be called “strong inferences”.

2. Logical rules:
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(a)
A—T,D

-D,I' = A

DT — A

A S NE))

(—:right)

C,I' - A D,I'— A
CANDT — A and CADT'— A
r-AC I'—-AD

I -ACAD

(A:left) (A:left)

(A:right)

cCI'—A DI —A
CvDTl—A

(Vv:left)

Ir—AC
- ACvVD

Ir—A,D
and Ir-ACAD

(V:right) (V:right)

r—AC DII—A
C>D,I'NIT - AA
C,;I' - A,D
r—-ACDD

(D:left)

(D:right)

F(t),I' - A
VaeF(xz),[' - A

['— A, F(a)
I' - A VaF(x)

(V:left)

(V:right)

12

where ¢ is an arbitrary term, and a does not occur in the lower sequent.

The a in (V:right) is called the eigenvariable of this inference.

F(a),T' — A ‘ I'— A F(t)
dxF(z), [ = A (Sileft) I'— A, JzF(x)

(F:right)

where a does not occur in the lower sequent, and ¢ is an arbitrary

term. The a in (F:left) is called the eigenvariable of this inference.

3. Cut:
r—-A,D DI—A

I — AA

(D)

D is called the cut formula of this inference.

DEFINITION 3.3 A sequent of the form A — A is called an initial sequent. A

proof P (in LK) is a tree of sequents satisfying the following conditions:

1. The topmost sequents of P are initial sequents.



CHAPTER 3. PROOF THEORY 13

2. Fvery sequent in P except the lowest one is an upper sequent of an inference
whose lower sequent is also in P.

Although the formula A in an initial sequent A — A can be highly complex,
we can restrict ourselves to atomic formulas in initial sequents.

We now have a formal concept of a proof and can analyze proofs carried out
in this calculus. The investigation of properties of this calculus and the structure
of proofs in it is the Gentzen-like proof theory.

3.3 Example Proofs in LK

A—A

— A, —A

— A AV AA

— AV -A A

— AV -AAV-A
— AV -A

(—:right)
(V:right)
(E:right)
(V:right)
(C:right)

Suppose that a is fully indicated in F'(a).

F(a) — F(Cl) Je
— JoF(z), ~F(a) (V:right)

— JzF(x),Yy—F(y)
—Vy—=F(y) — 3z F(x)
— —Vy—-F(y) D 3xF(z)

(—:left)
(D:right)

3.4 Results on LK

Proof theory investigates the structure of proofs, so the main objects we are
talking about in proof theory is the calculus LK and proofs carried out in this
calculus. We will now present a few theorems without a proof. The proofs for all
the stated theorems can be found in [15].

THEOREM 3.1 (COMPLETENESS AND SOUNDNESS OF LK)
A formula is provable in LK if and only if it is valid.

This theorem states nothing else than that LK doesn’t deduce something
stupid (soundness) and that every “true” formula can be deduced (completeness).

The most important fact about LK is the cut-elimination theorem, also known
as Gentzen’s Hauptsatz:
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THEOREM 3.2 (CuT ELIMINATION THEOREM)
If a sequent is LK-provable, then it is LK-provable without a cut.

This means that any theorem in the predicate calculus can be proved without
detours. That’s the meaning of the following corollary:

COROLLARY 3.1 (SUBFORMULA PROPERTY)
In a cut-free proof in LK all the formulas which occur in it are subformulas of
the formulas in the end-sequent.?

The cut-elimination is one of the most interesting features. When a typical
mathematician proves a new theorem, he uses a lot of other lemmas, theorems.
These lemmas are specialized for the given fact and used in the proof to formulate
a contradiction or to derive a certain property. In a formal proof this is equivalent
to a cut. We know that a fact is true, so we can assume it and cut the assumption
out of the proof at a later stage. So using the (Cut)-rule seems to be a natural®
procedure. Why try to eliminate the cuts in a proof?

The reason lies in the fact that a proof should represent something that can
be constructed, maybe like a program that tells you what to do and when. It
is the constructivity which makes the cut-elimination so interesting. On of the
important corollaries to the cut-elimination theorem is the midsequent theorem
(see below), which is nothing else than the good old Herbrand’s theorem.

Another difference is the following: What is interesting for a mathematician
in a proof is, besides that it proves a theorem, the esthetic component. A proof
is honored for its elegance*. A logician and especially a proof theoretician is
interested in what is necessary to prove a theorem and tries to pull out as much
information from the proof as possible, maybe discussing more than one proof
for the same theorem.

COROLLARY 3.2 (GENTZEN’S MIDSEQUENT THEOREM)

Let S be a sequent which consists of prenex formulas only and is provable in LK.
Then there is a cut-free proof of S which contains a sequent (called a midsequent),
say S’, which satisfies the following:

1. S’ is quantifier-free.
2. Every inference above S’ is either structural or propositional.

3. FEvery inference below S’ is either structural or a quantifier inference.

2T skipped the definition of subformula. It can be found in many books and is somehow
“self-describing”

3or whatever a mathematician means by “natural”

1Today elegance is the ability to use methods from a part of mathematics as far as possible
away from ones’ one.
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Thus a midsequent splits the proof into an upper part, which contains the propo-
sitional inferences, and a lower part, which contains the quantifier inferences.

Another important consequence of the cut-elimination theorem is the Mae-
hara’s lemma and the interpolation theorem as a consequence of it: For technical
reason we introduce the predicate symbol T, with 0 argument places, and admit
— T as an additional initial sequent. (T stands for “true”.) The system which
is obtained from LK thus extended is denoted by LK #.

COROLLARY 3.3 (MAEHARA’S LEMMA)
Let T' — A be LK-provable, and let (I'1,T's) and (Ay, Ay) be arbitrary partitions
of T' and A, respectively (including the cases that one or more of I'1,T'a, Ay, Ay
are empty). We denote such a partition by [{T'1; A1}, {T2; Ao}] and call it a
partition of the sequent I' — A. Then there exists a formula C' of LK # (called
an interpolant of [{T'1; A1}, {T2; As}]) such that:

(i) Ty — Ay, C and C,T'y — Ay are both LK #-provable;

(i1) All free variables and individual and predicate constants in C' (apart from
T) occur in I'y UA; and Ty U A,.

As a consequence of this Lemma we will present

COROLLARY 3.4 (CRAIG’S INTERPOLATION THEOREM FOR LK)

Let A and B be two formulas such that A D B is LK-provable. If A and B have
at least one predicate constant in common, then there exists a formula C', called
an interpolant of A D B, such that C contains only those individual constants
predicate constants and free variables that occur in both A and B, and such that
ADC and C D B are LK-provable. If A and B contain no predicate constant
in common, then either A — or — B is LK-provable.

The significance of the proof for Maehara’s lemma lies in the fact, that an
interpolant of A D B can be constructively formed from a proof of A D B.

COROLLARY 3.5 (BETH’S DEFINABILITY THEOREM FOR LK)

If a predicate constant R is defined implicitly in terms of Ry, ..., R, by
A(R,Ry,...,R,), then R can be defined explicitly in terms of Ay, ..., A, and the
individual constants in A(R, Ry,..., Ry,).



Chapter 4

The Calculus LpgK

In this chapter the calculus LpgK will be presented. It’s based on Gentzen’s LK
(cf. 3.2) and extends it by certain means.

Each of the following sections deals with a certain topic of the calculus. These
topics are the definition of the language (4.1), the formalization of terms, atomic
formulas and formulas (4.2) and the laying down of the initial sequents and the
rules of inference (4.3).

Finally we will give some examples for proofs in LpgK (cf. 4.4).

4.1 The Language Lpg for LpgK

The language for LpgK is a type language with two types, Points and Lines.
These two types will be denoted with 7p and 7, , respectively.
So the language Lpg for LpgK consists of the following parts:

1. Constants:

(a) Individual constants of type mp: Ao, By, Co, Dy.

(b) Function constants (the type is given in parenthesis): con:[tp, 7p —
Tz, intsec:[1z, 70 — Tp).

(c) Predicate constants (the type is given in parenthesis): Z:[1p, Tp], =.

2. Variables:
(a) Free variables of type mp: Py, Py, ..., P; (j =0,1,2,...).
(b) Bound variables of type 7p: Xo, X1, ..., X; (j =0,1,2,...).
) Free variables of type 7z: go, 91, ..., 9; (7 =0,1,2,...)

)

(c

(d) Bound variables of type 7z: zo, 21, ..., z; (j =0,1,2,...).

16
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3. Logical symbols:
= (not), A (and), V (or), D (implies), V,, (for all Points), V. (for all Lines),
3;, (there exists a Point), 3., (there exists a Line). The first four are called
propositional connectives and the last four are called quantifiers.

4. Auziliary symbols: (, ), and , (comma).

The constants Ay,...,Dy are used to denote the four Points obeying (PG3).
We will use further capital letters, with or without sub— and superscripts, for
Points® and lowercase letters, with or without sub— and superscripts, for Lines.
Furthermore we will use the notation [PQ)] for the connection con(P, Q) of two
Points and the notation (gh) for the intersection intsec(g, h) of two Lines to agree
with the classical notation in projective geometry. Finally Z(P, g) will be written
PIg.

We also lose the subscript ,, and ;. in V
easy to deduce from the bound variable.

We have discussed also other languages, e.g. not typed languages with special
predicates identifying Points and Lines, but considered this formalization easier
to handle. For extensions of the language to higher types, see 9.1.

ps - -, since the right quantifier is

4.2 Formalization of Terms, Atomic Formulas
and Formulas

In the following we assume that the language Lpg is fixed. Any finite sequence
of symbols (from the language Lpg) is called an expression (of Lpg).

DEFINITION 4.1 Terms of type are defined inductively as follows:
1. Every indiwidual constant is a term of the respective type.
2. Fvery free variable is a term of the respective type.
3. If R and S are terms of type Tp, then [RS] is a term of type 7.
4. If g and h are terms of type 1., then (gh) is a term of type Tp.

5. Terms are only those expressions obtained by 1-4.

DEFINITION 4.2 If P is of type 7p and g is of type 1., then PZLg is an atomic
formula. Ift and u are terms of the same type, then x = y is an atomic formula.
Formulas and their outermost logical symbols are defined inductively as follows:

LCapital letters are also used for formulas, but this shouldn’t confuse the reader, since the
context in each case is totally different.
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1. Fvery atomic formula is a formula. It has no outermost logical symbol.

2. If A and B are formulas, then (=A), (AAB), (AVB), A D B are formulas.

Their outermost symbols are =, A\, V, D, respectively.

3. If A is a formula, P is a free variable of type 7p and X is a bound variable
of type Tp not occurring in A, then (VX)A" and (3X)A" are formulas, where
A’ is the expression obtained from A by writing X in place of P at each
occurrence of P in A. Their outermost symbols are ¥V and 3, respectively.

4. If A is a formula, g is a free variable of type T, and x is a bound variable
of type T not occurring in A, then (Vx)A" and (Jz)A’" are formulas, where
A’ is the expression obtained from A by writing x in place of g at each
occurrence of P in A. Their outermost symbols are ¥ and 3, respectively.

A formula without free variables is called a closed formula . A formula which is
defined without the use of the last two clauses is called quantifier-free.

4.3 The Rules and Initial Sequents of LpgK

This section will give the rules and initial sequents of LpgK. So it completes the
definition of LpgK.

DEFINITION 4.3 A logical initial sequent is a sequent of the form A — A, where
A is atomic.
The mathematical initial sequents are formulas of one of the following forms:

1. — PI[PQ)| and — QZ[PQ)].

2. — (gh)Zg and — (gh)Zh.

3. X =Y — where X, Y € {Agy, By, Co, Do} and X #£Y.
4. — x=x wherex is a free variable.

The initial sequents for LpgK are the logical initial sequents and the mathemat-
1cal initial sequents.

The first two clauses are nothing else then (PG1) and (PG2). (PG3) is realized
by a rule.

DEFINITION 4.4 The rules for LpgK are (cf. 3.2)
1. Structural rules (cf. p. 11)

2. Logical rules (cf. p. 11)
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3. Cut rule (cf. p. 12)
4. FEquality rules

r-As=t s=u,Il —
t=ul' = A

= (trans:left)

' > A,s=t I' > A,s=

u :
FoAf—u (trans:right)

s=t,I' > A ' - A,s=t .
m (symmleft) m (symmrzght)

' - A,s=t sZu,I' — A

= (id-Z,, :left)

' — A,; itA,l;Iz A, sTu (id-L, :right)

= A, v el 2 (d-T,, Aeft)

L Avu= UA,EI: BT G T left)
iy ) (A e
F—>Ag=h Lo =h

(id-int:1) (id-int:2)

T A (19) = (1h) T A (g1) = (D)
5. Mathematical rules: (PG1-1D) and (Erase)

I'=APIlg T—=A,QZg P=Q,I' = A

F=APQ =g (PGL-ID)
' - A XT)YZ
—>F’—>A[ ] (Erase)

where %(X,}/,Z) and X, Y,Z € {Ao,Bo,Co,Do}

We now have all the essentials for the calculus LpgK and can define the
notion of a proof:

DEFINITION 4.5 A proof P in LpgK is a tree of sequents satisfying the following
conditions:

1. The topmost sequents of P are initial sequents for LpcK.

2. FEvery sequent in P except the lowest one is an upper sequent of an inference
for LpcK whose lower sequent is also in P.
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4.4 Sample Proofs in LpgK

We will now give some example proofs in LpgK.

4.4.1 The Diagonal-points

We will proof that the diagonal-points Dy, Do, D3 (cf. 2.3.3) are distinct from one
another and from Ay, ..., Dyg.

- Ao‘7é D, — Bo‘% D, — Co‘7é D, — Do'# D,
—# (Ao, By, Co, Dy, D1)

Each of the proof-parts is similar to the following for — Ay # D,

Ao = ([AoBo][CoDo]) — Ao = ([AgBo][CoDo]) — ([AeBo][CoDo))Z[Co Do)
AO = ([A()Bo] [OoDo]) — A()I[C()DQ]

Ao = ([AoBo][CoDy]) —

— Ay # ([AoBo][CoDy))

(atom)
(Erase)
(—:right)

4.4.2 Identity of the Intersection-point

We will proof the fact, that there is only one intersection-point of g and h, i.e,
the dual fact of (PG1-ID).

PIg— PIg — (gh)Ig P = (gh)— P = (gh) (atom) FIh— PIh - (WIh P =(gh) > P = (gh) (atom)
PIg— P = (gh),[P(gh)] =g o PTh = P = (gh), [P(gh)] = h (atom) o
PIg,PTh — P = (gh),g=h (—ileft) o
g # h, PTg, PTh — P = (gh) (Adleft)

PZgANPIhNg#h— P=(gh)
— PZgAPIhAg#h D P = (gh)
— (VX)(Vu)(Vo)(XZu A XIv Au#v D X = (uv))

(D:right)
(V:right)




Chapter 5

On the Structure of Proofs in
LpcgK

In this chapter we will analyze the structure of a proof in the calculus LpgK.
After discussing the proofs we will give a cut-elimination theorem for LpgK.
Finally we will discuss certain consequences of the cut-elimination theorem, es-
pecially the structure of terms and minimal proofs. This will lead us to some
interesting results about proofs and sketches in the next chapters.

5.1 The Cut Elimination Theorem for LpcK

We will now study the structure of proofs carried out in the calculus LpgK.
Starting with a general proof we will first analyze the underlying combination of
geometric and logical structures and bring them into a context with the proof.
Then we will discuss the cuts and show that they can be eliminated due to the
special structure of the rules of the calculus.

We will refer to the equality rules (cf. p. 19), (PG1-ID) and (Erase) as (atom)-
rules, because they only operate on atomic formulas and therefore they can be
shifted above any logical rule (see Step 1 below). We will now transform any
given proof in LpgK step by step into another satisfying some special conditions,
especially that the new one contains no (Cut).

DEFINITION 5.1 (NORMALIZED PROOF) A proof P is in normalized if there is
no application of a logical rule above any application of a (atom)-rule.

A normalized proof is split into two parts P; and Ps
: Pr

: Py
II—-T

21
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where P; is an (atom)-part with (atom)- and structural rules only and P, is a
logical part with logical and structural rules only.

The semantic content of these parts is easy to understand: In the first part
geometry is practiced in the sense that in this part the knowledge about projective
planes is used. The second part is a logical part connecting the statements from
the geometric part to more complex statements with logical connectives.

LEMMA 5.1 For every proof of a sequent I' — A there is a proof in normal form
for the same sequent.

PROOF: (atom)-rules only operate on atomic formulas and therefore they cannot
interfere with any of the logical rules. So every application of a logical rule above
a given (atom)-rule must operate on a formula which cannot be an ancestor of the
formula the (atom)-rule operates on. Therefore the (atom)-rule can be shifted
above the logical rule. |

We now come to the essential lemma for proving the cut-elimination theorem.
We will show that from a proof with only one application of the (Cut)-rule the
cut can be eliminated. The cut-elimination theorem then follows with induction
on the number of cuts in a proof.

LEMMA 5.2 For every proof in normal form with only one cut there is a normal-
1zed proof of the same endsequent without a cut.

Proor: STEP 1: We will start with the cut-elimination procedure as usual in
LK. We will now give only the idea behind this step, the detailed proof can be
found in many textbooks on mathematical logic, e.g. [15]. The proof is a double
induction on the grade and the rank of a proof (these are measurements of the
complexity of the proof and the formula).

This procedure shifts a cut higher and higher till the cut is at an axiom where
it can be eliminated trivially. Since in our case above all the logical rules there is
the (atom)-part, the given procedure will only shift the cut in front of this part.
We will now give some typical parts when shifting over rules. In this proof not
the (Cut)-rule itself is used, but the equivalent (Mix)-rule, which is

'—-A II—A
[ I7 — A7 A

(Mix)

where both A and II contain the formula A, and A# and II” are obtained from
A and II respectively by deleting all the occurrences of A in them.
If the outermost logical symbol of the mix-formula is A then a proof

F—>A1,B F—>A1,C B,F1—>A
F—>A1,B/\C B/\C,H1—>A
P,H1—>A1,A

(Mix)
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where none of the proofs ending with I' — A, B; I' — A,C or B,II; — A
contains a mix. Then the mix is reduced in its complexity by:

FHAl,B B,H1—>A
I 7 — A7 A

where IT¥ and A? are obtained from II; and A; by omitting all occurrences of

B. This proof contains only one mix, furthermore the grade of the mix formula

B is less than the grade of A = BAC. So by induction hypothesis we can obtain

a proof which contains no mixes and whose end-sequent is I, Hf — A#, A. From

this we can obtain a proof without a mix with end-sequent I', II; — Ay, A.
STEP 2: Now the cut is already in front of the (atom)-part:

P P,
H1 — Fl,P(t,U) P(t,u),Hg — FQ
II—-7T

(Cut)

e First we shift all the applications of rules in P, not necessary, i.e. all applica-
tions of rules not operating on the formula P(¢,u) or one of his predecessors
in the antecedent of Py, under the cut-rule. ILe., if we have ((atom) in this
proof stands for any application of an (atom)-rule)

A=A A P(tu), I — T

L P, AP(w, V=T fE‘;‘tom)
I, — Ty, P(t,u) Ptu), Al T ¢
AlIl - T (Cut)
we can shift the cut above the (atom)-rule and get
p, AL P(tu), 117 — T left
M 5Ty Pl u), AT — 7 (et
Hl A H// N Fl 1"// <Cut)
(E:left)
A — A AT T — T
(atom)

ATl —-T
By iterating this procedure we finally get something like that for Ps:
A— Aty =ty Pti,u) — Pti,w)

A, — A,, U1 = U2 P(tg,Ul),H/ — F/7P(t1,u1>
P(tg,Ug),H” — F//7P<t1,ul)

P(t,u),ﬂz — FQ
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(Note that the P(t,u) need not to be present in the succedent when the
axiom is a mathematical one, e.g Ay = By.) In other words, P; is a chain
of applications of (atom)-rules on the predecessor of the cut-formula.

e Now we can apply the dual rules! in inverse order on the formula P(t,u) in
the endsequent of P; and we get one of the following proofs, depending on
whether the axiom in P, is a logical or a mathematical one.

Case 1. The axiom is a logical one. So the proof looks like this

L pr
I —T,P(tu) Pltu) — Pt u)
0T, P(tu) (Cut)

This case can easily be handled since the cut is unnecessary and this part
of the proof can be substituted by P’ only.

Case 2. The axiom is a mathematical one. This is only possible if P(t,u) is
an instance of x = y — with z and y pairwise distinct in {Ag, By, Co, Do }.
Let’s assume it’s Ag = By —. The proof now looks like this:

Py
H—>F,A0:BO A0:B0—>
II—-T

(Cut)

We now turn our analysis to the P; part of this proof: How can the formula
Ag = By in the succedent of the end-sequent of P; emerge from the axioms?
First note that a formula of the form X = Y with X and Y Points can
only originate from a logical axiom t = v — t = v or — x = x via a
set of equality-rules operating on the right side, i.e. the set {(symm:right),
(trans:right), (id-Z.,:right), (id-Z,,:right), (id-con:1), (id-con:2), (id-int:1),
(id-int:2) } (without (PG1-ID), because this rule generates a formula x = y
where z and y are Lines) or from a weakening at the right side (W:right).
We will only discuss the first case and the third one in detail, since the
second one is analog to the first one. Assume the proof looks like this:

: I - Dt=t t=u—t=u
A—ANu=1u t=u,Il' Tt =u
t:U,, H/I N ]_—\//7t/ :U/

t:u,H—>'T,A0:BO AOZBQ—>
t=u,Ill - T

(Cut)

'E.g. (trans:left) and (trans:right) are dual rules



CHAPTER 5. ON THE STRUCTURE OF PROOFS IN LpcK 25

If we now apply these equality-rules dually in reverse order on the mathe-
matical axiom Ag = By —, then the proof is transformed into a new one
where the cut-rule is eliminated:

AO :'BO —

H/%I;’,t:t/ t’:u’,ﬂ”—d“”
A—ANu=u t=u 1I' =TV
t=u,ll - T

The procedure is the same if the axiom we are starting from is not ¢t = v —
t=ubut -z =u.

For the case of (W:right) we loose this application, loose all the (atom)-
rules operating on the successors of the weakening formula and get the same
endsequent of this part of the proof by some (W:left) to get the formulas
which come into the antecedent via the now lost (atom)-rules.

That completes the proof of the lemma. O

ExXAMPLE: A trivial example should explain this method: The proof

1 =T X1 =2 T1—=U—T1—=1U

T9g = X3 — T9 = T3 T1 =T2,1 = U — Ty =1U
To =3, L1 = T2, T —=U—>T3=1U I3 = U —

’ = - _ (Cut)

Ty = T3,T1 = T2, T3 = U —

will be transformed to
T9g =3 —> XLy = T3 T3 —=U—
r1 = Ty — L1 = T2 T9g = T3,Tg = U —
L1 = T2, T2 = T3, T1 = U —

Q

As the final consequence from this part we state the cut-elimination theorem
for LpgK:

THEOREM 5.1 (CuT ELIMINATION FOR LpgK) If there is a proof of an end-
sequent Il — T" in LpgK, then there is also a proof without a cut.

Proor: By the fact that everything above a given sequent is a proof of this
sequent and by using Lemma 5.2 and induction on the number of cuts in a proof
we could eliminate one cut after another and end up with a cut-free proof. O

The existence of this theorem primary depends on the existence of equality-

rules like
—z=y Pr,w)—

Py, w) —
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and on the (Erase)-rules like

IT— T, AyZ[B,Cy]
II—r

(Erase)

For the first rules this is reasonable from the transformation of proofs given above.
For the latter, the (Erase)-rules, this was an interesting discovery: In almost all of
the many developed calculi there were no (Erase)-rules, but a set of left-axioms
(e.g AyZ[BoCy] —). We first expected that all the left-axioms, i.e. all axioms
concerning the four constant Points with the properties given in (PG3) would
cause problems in the cut elimination process.

Further investigations showed, that axioms like Ay = By — cause no prob-
lems, but the axioms A¢Z[ByCy| — in conjunction with the positive mathemat-
ical axioms — XZ[XY]. It can be proved, that if we take the calculus with
the mathematical left-axioms A¢Z[ByCp] and no (Erase)-rules, not all cuts can
be eliminated, but cuts from such left-axioms with descendents of mathematical
right-axioms (via a chain of equality-rules, see the description above) remain.

ExAaMPLE: We will now present an example proof and the corresponding proof
without a cut. We want to prove that for every line there is a point not on that
line, in formula: (V¢)(3X)(XTg).

Before we give the proof in LpgK, a few words about the way something is
really proved in any sequential calculus: When you want to prove a fact, it is
good to start from the bottom, the root of the prooftree and work up the tree to
the axioms, the leafs. This is a procedure which is a bit more according to the
human reasoning and normal proving. This we will keep in mind when proving
the mentioned fact.

We will first give the proof in words and then in LpgK.

PrOOF: (Words) When AyTg then take Ay for X. Otherwise AgZg. Next if BTy
take By for X. If also ByZg then take Cj, since when Ay and By lie on g, then
g = [A()B()] and C()I[A()Bo] =g by (PG?)) a

PrOOF: (LpgK) Now to the proof in LpgK (Don’t forget to read the proof the
first time from bottom up!):

BoZg — BoZg
BoZg — Bolg _ Bofg — Bolg LI
AoZg — AoZg — BoZg,Bofg Bolg— (3X)(X¥g) AoZg,BoZg— (3X)(XTg)
AoZg — AoZyg AoTg — Aoty — BoZgV BoTg BoZgV Bolg, AoZg — (3X)(XTg) (Cut)
— AoZg, AoTg AoTg — (3X)(XTg) AoZg — (3X)(XTg)
— AoZg V AoTg AoZgV AoTg — (3X)(XTg) (Cut)

— (3X)(XTg)
— (V9)3X)(XTyg)
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H1 .
AgZg — AeZg ByIg — ByIg A= By — CoZ[AgBo] — CoI[Ao By (Erase)
AoZg, BoZg — g = [AoBy| CoZ[AgBy| —
AOIg7 B(]Ig7 COIg -
AoZg, BoIg — (3X)(XTg)
O

The cut-elimination procedure? yields a cut-free proof of the same end-sequent:

AoZg — Bolg Bolg— Bolg Ag= By— CoZ[AoBy| — CoZ[AoBy) (Erase)
AoZg, BoZg — g = [Ao By CoZ[AoBo) —
AoZg, ByZg, CoZg —
— ATy, BoTg, Colg
— (3X)(XTy), 3X)(XTyg), (3X)(XTy)
— (3X)(XZyg)
— (Vg)(3X)(XZg)

5.2 Some Consequences of the Cut Elimination
Theorem for LpgK

5.2.1 The Mid Sequent Theorem for LpgK

COROLLARY 5.1 (MIDSEQUENT THEOREM FOR LpgK)

Let S be a sequent which consists of prenex formulas only and is provable in
LpcK. Then there is a cut-free proof of S which contains a sequent (called a
midsequent), say S’, which satisfies the following:

1. S" is quantifier-free.

2. FEvery inference above S’ is either structural, propositional, mathematical
or equality inference.

3. Ewvery inference below S’ is either structural or a quantifier inference.

Thus a midsequent splits the proof into an upper part, which contains the propo-
sitional inferences, and a lower part, which contains the quantifier inferences.

2or a close look
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PRrROOF: (Outline) Because of the cut-elimination theorem we may assume that
there is a cut-free normalized proof of S, say P. All the initial sequents in P
consist of atomic formulas (this is due to the special formalization of LpgK, but
it can be achieved for every LK-calculus). Let I be a quantifier inference in P.
The number of propositional inferences under I is called the order of I. The sum
of the orders for all the quantifier inferences in P is called the order of P. The
proof is carried out by induction on the order of P.

Case 1: The order of P is 0. If there is a propositional inference, take the
lowermost such, and call its lower sequent Sy. Above this sequent there is no
quantifier inference. Therefore, if there is a quantifier in or above Sy, then it is
introduced by weakenings. Since the proof is cut-free, the weakening formula is a
subformula of one of the formulas in the endsequent. Hence no propositional in-
ferences apply to it. We can thus eliminate these weakenings and obtain a sequent
S; corresponding to Sy. By adding some weakenings under \S)) (if necessary), we
derive S, and S, serves as mid-sequent.

If there is no propositional inference in P, then take the uppermost quantifier
inference. Its upper sequent serves as a midsequent.

Case 2: The order of P is not 0. Then there is at least one propositional
inference which is below a quantifier inference. Moreover, there is a quantifier
inference I with the following property: the uppermost logical inference under
is a propositional inference. Call it I’. We can lower the order by interchanging
the positions of I and I’. Here we present just one example: say [ is (V:right).

P:
I' - ©,F(a)
T =0, (vo)F(z) |
D (*)

A — A

I/

where the (*)-part of P contains only structural inferences and A contains (V) F'(x)
as a sequent-formula. Transform P into the following proof P’:

' - 0, F(a)
structural inferences

['— F(a),0, (Vx)F ()

'
A — A, (Vo)F(z)
'—A

1

It is obvious that the order of P’ is less than the order of P. O

Combining the description of proofs in 5.1 above and this corollary we get the



CHAPTER 5. ON THE STRUCTURE OF PROOFS IN LpcK 29

following form of proofs in LpgK:

Py
P

: Ps
II—-T

The first part P; is the geometric part (see above), the second one P; is the
propositional part and the third one Pj is the quantifier part. In the example
given at the end of the last section (c.f. p. 27) these three parts are easy to
recognize: The first two inferences represent the geometry, the next one (actually
the next three) the propositional part and the last the quantifier part.

As a corollary from this theorem the classical theorem of Herbrand can be
derived. This theorem states that for any formula A there is a disjunction of
instances of A which is equivalent to A. In other words, the right instances for
the bound variables can be found in the Herbrand universe of this formula. This
formula actually is the midsequent.

5.2.2 The Structure of Terms and minimal Proofs

There are two basic ways of measuring the complexity (or length) of proofs:

(1) to count the number of proof lines,

(2) to count the total size of the proof (i.e to count each symbol). Trivially the
size is an upper bound to the number of proof lines. It is much more difficult to
bound the size using the number of proof lines. Since in LpgK function symbols
are allowed, formulas in the proof may contain large terms and it is difficult to
find some bounds to the size of these terms using only the information about the
number of proof lines.

In general proofs with few proof lines may contain large terms. In this section
we shall show that in cut-free proofs, which can be found for every proof in LpgK
due to theorem 5.1, one can replace large terms by terms whose size is bounded
where the bound depends only on the number of proof lines and the size of the
sequent that we want to prove.

We recall that a proof is a rooted tree with the nodes labeled with sequents
and the vertices labeled with the rules and that terms only contain free variables.

DEFINITION 5.2 A semiterm is a term that is allowed to contain bound variables.

The size of a formula or a semiterm is the number of symbols in it. The size
of a sequent is the sum of the sizes of formulas in the sequent. The size of a proof
15 the sum of the sizes of the sequents in the proof. The number of proof lines of
a proof is the number of vertices of the tree. The size of a semiterm or formula
or sequent or proof X will be denoted by | X]|.
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DEFINITION 5.3 (PROOF SKELETON) A proof skeleton is a rooted tree whose
vertices are labeled by the inference rules of LpgK. Further, it is marked on
the tree which son of a given vertex is the left one, (which one is the middle
one,) which one is the right one. For the exchange rules (3:left) and (3:right) the
label contains also the number of the pair to which it should be applied. For the
(Erase)-rule the label contains the formula which is erased.

The information which the skeleton does not contain are the terms and vari-
ables used in quantifier and equality rules. Every proof determines uniquely its
skeleton. A cut-free skeleton is a skeleton in which no vertex is labeled by the
cut rule.

DEFINITION 5.4 (PREPROOF FOR LpgK) A preproof for LpgK is a structure
which has all the properties of a proof except for the logical initial sequents which
are only required to be of one of the following forms:

B(Sl,...,Sn)—>B(t1,...,tn) (*)
where s1,...,8y,11,...,t, are terms.

To construct a preproof from a given proof skeleton proceed as follows:

(1) assign I' — A on the root of S,

(2) if a sequent has been assigned to a vertex v of S and v is not a leave,
assign sequents to its sons according to the rule assigned to v. In some cases
certain actions have to be done:

In case of structural and propositional rules these sequents are uniquely de-
termined.

In case of the quantifier rules choose always a new free variable and substitute
it for the bounded variable

In case of the equality rules (trans:left), (trans:right), (id-Z,,:left),
(id-Z,,right), (id-Z,,:left), (id-Z,,.:right) introduce a new free variable and sub-
stitute it for the “lost term” in application of this rule.

In case of (id-con:1), (id-con:2), (id-int:1), (id-int:2) this part of the partly
filled proof skeleton looks for (id-con:1) like (the other 3 cases are similar)

m (id—con:l)
If ¢ is not already [nm] for some terms n, m, then substitute in the whole proof
[zy] for t, where z, y are new free variables. The same happens for u. So we have

id-con:1
T A o] = o] VY

and can fill up the skeleton to
I—Az=z (id-con:1)

I'— A, [zy] = [zu]
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This happens at each occurrence of one of the above mentioned rules.

In case of (PG1-ID) it is similar to the last one, but only the left term of the
equality has to be substituted in certain circumstances.

It is clear that if there is a proof of I' — A with skeleton S, the procedure
above constructs a preproof P, such that each regular proof P of I' — A with
skeleton S can be obtained from F, by substituting suitable terms for the free
variables introduced at the vertices labeled by (V:left) and (J:right) and by renam-
ing the free variables. This method is due to Matthias Baaz and the estimation
and formalization can be found in [8].

The preunification problem U is constructed from a preproof F, as follows:

(1) We treat bounded variables, eigenvariables and free variables of I' — A
and Ay, ..., Dy as constants i.e. they cannot be substituted for;

(2) (t,s) e Uiff t =t;, s = s;, i < n, for some logical initial sequent of P of
the form (x) above;

(3) for every free variable A introduced at some (V:left) or (F:right) vertex
require that any term o(a) substituted for @ must not contain a bound variable,
an eigenvariable of the proof of a free variable of I' — A

The final set unification problem consists of unification problems, which are
obtained from the preunification problem by adding for each initial sequent in
Py of the form ¢ = u — two pairs, one of the (¢,z),z € {Ay, By, Co, Do} and
one of the (u,y),y € {Ao, Bo, Co, Do}, in any combination. Since there is only a
finite number of initial sequents of the above form, there is only a finite number
of unification problems.

A solution for the set of unification problems is a mapping o : A — T, where
A is the set of free variables introduced at (V:left) and (J:right) vertices, and T
the set of all terms, which is a solution for one of the unification problems in the
set.

Because of (1), the restrictions in (3) are of a special type and under this
circumstances the following claim can be proved:

CrAamM: For every 0 : A — T, o is a solution for the set of unification problems
with the restrictions iff o produces a regular proof from Fj. |

Since there is a solution to this problem there is a most general unifier which
minimizes the term depth in P. For such a minimal proof the depth of the terms
can be bound.



Chapter 6

The Sketch in Projective
Geometry

Most of the proofs in projective geometry are illustrated by a sketch. But this
method of a graphical representation of the maybe abstract facts is not only used
in areas like projective geometry, but also in other fields like algebra, analysis
and I have even seen sketches to support understanding in a lecture about large
ordinals, which is highly abstract!

The difference between these sketches and the sketches used in projective
geometry (and similar fields) is the fact, that the proofs in projective geometry
deal with geometric objects like Points and Lines, which are indeed objects we
can imagine and draw on a piece of paper (which is not necessary true for large
ordinals).

So the sketch in projective geometry has a more concrete task than only il-
lustrating the facts, since it exhibits the incidences, which is the only predicate
constant besides equality really needed in the formulization of projective geome-
try. It is a sort of proof by itself and so potentially interesting for a proof-theoretic
analysis.

As a first example I want to demonstrate a proof of projective geometry,
which is supported by a sketch. It deals with a special sort of mappings, the so
called “collineation”. This is a bijective mapping from the set of Points to the
set of Points, which preserves collinearity. In a formula:

coll(R, S, T) D coll(Rk, Sk, Tk)

(Don’t forget, in projective geometry functions are written behind the variables,
see chap. 2) The fact we want to proof is

—coll(R, S, T) D —coll(Rk, Sk, Tk)

That means, that not only collinearity but non-collinearity is preserved under a
collineation.

32
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The proof is relatively easy and is depicted in fig. 6.1: If Rk, Sk and Tk
are collinear, then there exists a Point X’ not incident with the Line defined
by Rk, Sk, Tk. There exists a Point X, such that Xx = X’. This Point X
doesn’t lie on any of the Lines defined by R, S, T. Let @ = ([RT][XS]) then
QRI[RKSkK| and QrZ[SkX k|, that is QrZ[SkX'] (since collinearity is preserved).
So Qk = Sk (since Qr = ([RrSK|[SkX']) = Sk), which is together with @ # S
a contradiction to the injectivity of .

Tk

Figure 6.1: Sketch of the proof —coll(R, S,T") D —coll(Rk, Sk, Tk)

This sketch helps you to understand the relation of the geometric objects and
you can follow the single steps of the verbal proof.

If we are interested in the concept of the sketch in mathematics in general
and in projective geometry in special then we must set up a formal description
of what we mean by a sketch. This is necessary if we want to be more concrete
on facts on sketches. So we come to ...

6.1 A Formalization of Sketches in Projective
Geometry

In this part we want to give a formalization of the sketch in projective geometry
and want to explain our motivation behind some of these concepts.

All Points and Lines are combined in the sets called 7p and 7., respectively.
So if we say, that x € 7p, than we mean that x is from type Point, means it’s any
term which describes a Point.

Sketches speak about geometric objects, that are Points and Lines. So the
first logical objects necessary for the formalization are constants or variables for
Points and Lines. From these constants we could build more and more complex
objects by connecting and intersection. This step is described in

DEFINITION 6.1 (SET OF TERMS OVER C) Let C be a set of constants of type
Tp or Tz, than 7, is inductively defined

e TH(C)=C

e 7,.1(C)=7T,(0C) UW[tu] : t,u € T,(C); t,u € 7p}
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U{(tu) : t,u € T,(C);t,u € 70}

DEFINITION 6.2 (DEPTH) The depth of a term t is defined as the number n, at
which t is added (or constructed) in the process given above.

The expression “depth” describes nothing else than it says, namely how deep
a term is nested.

To ensure consistency inside a set of starting objects, they must obey one
rule, namely that if a compound term is in the set, than also the subterms are.
That’s the reason for the next definition.

DEFINITION 6.3 (ADMISSIBLE SET OF TERMS) Let M be a subset of T(C), C a
set of constants, then M is called admissible if it obeys the following rules:

o (V[XY]e M)(X,Y e M)
o (V(gh) e M)(g,h € M)

The idea is to define a set of Points, Lines and certain combinations of them
(the intersection points and connection lines) and let the sketch be a subset of
all possible atomic formulas over these terms.

DEFINITION 6.4 (UNIVERSE OF FORMULAS) Let M be an admissible termset
and P a set of predicates, then the universe of formulas over M with regard to

P is defined as
FUp(M) = {P(t1,t2) : P € P;t; of the right types}

P will only be {Z,=} or {Z}. The set FU contains all the possible positive
statements which can be made over the termset M.

If we bear in mind that we want to do something proof-theoretic with the
formalization of the sketch, we must ensure that nothing evil happens when a
simple procedure without any knowledge about geometry is working with it. And
one of the evils that could happen is a

DEFINITION 6.5 (CRITICAL CONSTELLATION) Let P and Q) be terms in mp and
g and h terms in 12. Than we call the appearance of the following four formulas

a critical constellation:
PIg | PIh

QZLg | QIh
We will denote such critical constellations by (P,Q; g, h).

Such a constellation is called critical, because from these four formulas it
follows that either P = @ or g = h (or both), but we cannot determine which
one without supplementary information (see fig. 6.2).

When constructing any sketch we start from some assumptions over a set
of constants and then construct new objects and deduce new relations. From
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9

h

Figure 6.2: The two solutions for a critical constellation

a proof-theoretic point of view these first assumptions are the left side of the
deduced sequent, i.e. the assumptions from which you deduce the fact. In the
proof given at the beginning of this section the assumptions are that R, S, T
are not collinear and that Rk, Sk, Tk are collinear. Then we tried to deduce
a contradiction to show, that one of the assumptions is wrong, i.e. that from
—coll(R, S, T) —coll( Rk, Sk, Tk) can be deduced.

We now come to the final definition of the sketch. We want that a sketch is a
set describing all the incidences in the sketch!. But we want also that this subset
is closed under trivial incidences, which means that if we talk about a Line which
is the connection of Points, then we want that the trivial formulas expressing
that these two Points lie on the correspondending Line.

Further we don’t want to have a critical constellation in a sketch. That arises
from the fact that we want that every geometric object is described only by one
logical object, i.e. one term. Since a critical constellation implies the equality of
two logical objects, which we cannot determine automatically, we want to exclude
such cases.

DEFINITION 6.6 (SKETCH) Let M be a admissible termset over a set of con-

stants C, {Ao, Bo, CQ, DQ, [A()Bo], ey [C()Do]} C M,

let £, be a subset of FU (M)

and E_ a subset Of .7'7/{{1’7:}(./\/1) with AO 7é Bo, ceey CO 7é Do, A()I[B()C()],. cey
D()I[A()B()] e,

let Q be a set of equalities and let the quadruple (M, E,,E_, Q) obey the following
requirements:

(VX,Y € M, 7p)([XY] € M D (XZ[XY]) € &, A (YI[XY]) € &)
(Vg,h € M,7.)((gh) € M D ((gh)Ig) € Ex A ((gh)Th) € €4)  (S.1)
(=3z,y € M)(P(x,y) € E, N—P(x,y) € E-)

(mFIr e M)((x #x) € &) (S.2)
there are no critical constellations in £, .
(Ve e M)((x =x) € Q) (S.4)

Then we call the quadruple S = (M, E,,E_,Q) a sketch.

IThis one is on the paper!
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We will call the violation of S.2 also a direct contradiction.
A small example should help to understand the concepts:

g

g

Q R

Figure 6.3: A sample sketch

In the sketch depicted in fig. 6.3 the different sets are (where the incidences
of the constants are lost!):

C={P,Q,R X,g}
M={P,Q, R, X,g,[RQ]}
FUz -y = {PTg,QIg,RTg, X1g
PI[RQ], QI[RQ], RI[RQ], XI[RQ)
P=Q,P=RP=X,Q=R,Q=X,R=X,g= [RQ]}
& = {QZ[RQ], RI|RQ], XZIg}
& ={P1y,QTg, R1y, PTIQR], XT|QR]}

A few words to the habit of writing: If we are writing expressions like P &€
S,(PZg) € S,(PTh) € S..., then P € M, (PZg) € &;,(PTh) € £_, respectively
is meant. Any other similar expression has to be interpreted accordingly.

Why should the set £, only be a subset of FU (7} (M) and not of FU 7 —1(M)?
The reason is, that in a sketch every geometric object should have one and only
one name and should also be described by one logical object. The same idea lies
behind the introduction of the concept of the critical constellation.

Note that one sketch is only one stage in the process of a construction, which
starting from some initial assumptions forming a sketch deduces more and more
facts and so constructs more and more complex sketches.

The set () in the definition of the sketch initially was absent, but investigations
in the equality of proofs and constructions showed, that this set is important for
the proof, although it is not used in the sketch. This depends on the usage of the
equality: in the sketch it is a strict one, i.e., there is only one name for an object
allowed, while in a proof you can use one time one name, the other another name.
In the sketch, as we will later see, there is not a local substitution of a term, but
a global, therefore only one name is “actual” at a time for an object. But if we
want to translate a proof into a construction, which is one of the aims of this
work, we need informations on all the name-changes that are possible.
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6.2 Actions on Sketches

Till now a sketch is only a static concept, nothing could happen, you cannot
“construct”. So we want to give some actions on a sketch, which construct a
new sketch with more information. This new sketch must not obey the require-
ments S.1-S.3, but it will be a ...

DEFINITION 6.7 (SEMISKETCH) A semisketch is a sketch that need not obey
to S.2 and S.5.

These actions should correspond to similar actions in the real constructing.
After these actions are defined we can explain what we mean by a construction
in this calculus for construction.

The actions primarily operate on the set £, , since the positive facts are those
which are really constructed in a sketch. But on the other hand there are some
actions to add negative facts to a sketch. This is necessary for formalizing the
elementary way of proving a theorem by an indirect approach.

The following list defines the allowed actions and what controls has to be
executed. The following list describes the changes that have to be done on the
quadruple of a sketch when we want to carry out the corresponding action.

In the following listing we will use the function closure(Q)) on a set of equalities
(). This function deduces all equalities which are consequences of the set (). This
is a relatively easy computation. If we have Q = {z =2z, y=y,z2 =z, =y,y =
z}, then the procedure returns Q U {z = z}. This function is used to update the
set () of a sketch after a substitution.

Connection of two Points X,Y; Symbol: [XY]
o M' =M+ [XY]
o & =& +{XI[XY],YI[XY]}
o & =&
o Q' =Q+ ([XY]=[XY])

The requirement (S.1) and (S.4) is fulfilled since the necessary formulas are
added to £, and ). This action can produce a semisketch from a sketch.

Intersection of two Lines g, h; Symbol (gh)
Dual to the connection of two points.

Assuming a new Object C in general position, Symbol {C'}
o M =M+C
[ ] g_/i_ = g+
o & =&
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«Q=Q+(C=0)

That S’ is a sketch is trivial, since C' is a completely new constant. C' must
be a constant of type 7 or 7.

Giving the Line [XY] a name g := [XY]; Symbol ¢ := [XY]

o M'= M[[XY]/g]
o & =&, [[XY]/g]
o &' =& [[XY]/g]
o @' =Q[XY]/g]

S’ is a sketch since this operation is only a name-change.

Giving the Point (¢gh) a name P := (gh); Symbol P := (gh)
Dual to giving an intersection-point a name.

Identifying two Points u and t; Symbol v =t

o M' =M\ {u}
o & =& [u/t]
o & =E& [u/t]

e ()) = closure(Q U {u =t})

Note that the set ()’ can contain terms ¢ not in M’. This action can produce
a semisketch from a sketch. For an example c.f. fig. 6.4.

Identifying two Lines [ and m; Symbol [ =m
Dual to identifying two Points.

Using a “Lemma”: Adding tZu; Symbol tZu

o M' =M

o &' =&, + (tTu)
o & =&

e Q'=0

This action can produce a semisketch from a sketch.
Adding a negative literal tJu; Symbol tTu
e M' =M
o & =&,
o & =& + (tTu)
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e Q'=0Q
Adding a negative literal ¢t # u; Symbol ¢ # u
o M'=M
o & =&,
o & =& +(t#u)
e Q' =0Q

g h

Figure 6.4: Identifying two objects ¢ and u

To deduce a fact with sketches we connect the concept of the sketch and the
concept of the actions into a new concept called construction. This construction
will deduce the facts.

DEFINITION 6.8 (CONSTRUCTION) A construction is a rooted and directed tree
with a semisketch attached to each node and an action attached to each vertex and
satisfying the following conditions: If a vertexr with action A leads from node N,
to node Ny, then Ny is obtained from Ny by carrying out the action on Ny. If from
a node N there is a vertex labeled with [XY], (gh), {C}, g .= [XY], P := (gh),
then there is no other vertex from N. Furthermore if the pair (£4,E_) attached
to a node . ..

e yields a direct contradiction, then it has no successor,

e is a semisketch but not a sketch, i.e. that there are critical constellations,
let (P,Q;g,h) be one of them, then there are exactly two successors, one
labeled with the action P = Q) and one labeled with the action g = h.

What is deduced by a construction: A formula is true when it is true in all the
models of the given calculus. The distinct models in a construction are achieved
by case-distinctions. So if a formula should be deduced by a construction, it must
be in all the leafs of the tree. But since some leafs end with contradictions and
from the logical principle “ex falso quodlibet” we only require that a formula,
which should be deduced, has to be in all leafs which are not contradictious.

We also have to pay attention to the way a construction handles identities.
Since in a construction an identity is carried out in the way that all occurrences
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of one term are substituted for the other, we not only prove an atomic formula,
but also all the formulas which are variants with respect to the corresponding set
(. This notion will now be defined.

DEFINITION 6.9 Two atomic formulas P(t1,u) and P(ts,us) are said to be
equivalent with respect to Q, where Q) is a set of equalities, in symbols P(t1,u1) =g,
P(to,us), when (t1 = t2), (uy = u2) € Qn (or the symmetric one).

Now we can define the notion of what a construction deduces:

DEFINITION 6.10 A construction deduces a set of atomic formulas A iff for all
A € A there is a not contradictious leaf, where either A € Qn or (3B € EL(N)U
£_(N))A =qu) B.

For an example see section 7.

In the approach to formalize the sketch in projective geometry, one of the
early approaches was influenced by the idea of a closed world assumption: In
a sketch everything what is drawn unequal should be unequal and only those
incidences drawn are valid, all the others are wrong. It is similar to someone at
the airport asking for a connection from A to B, not finding such a connection,
deducing that there is none. But the negation of all not explicitly stated atomic
formulas led to serious problems, since projective geometry is not complete, i.e.,
there are theorems which are true in one model and false in another. Take for
an example the formula D1Z[DyDs], where the D; are the diagonal-points of the
points Aq, ..., Dy. As shown in sec. 2.3 there is projective geometry, e.g. the
minimal projective geometry, where this incidence is true, and other ones, e.g.
[1gp, where this incidence is wrong. So if we negate this axiom we would leave the
generality of models and restrict ourselves to special models. But this is possible,
if we assume this incidence in the initial sketch. For a detailed discussion on
different closed world assumptions compare to [2] and [11].
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An Example of a Construction

In this section we want to give an example proved on the one hand within LpgK
and on the other hand within the calculus of construction given in the last section.

We want to prove the fact that the diagonal-point D := ([A¢Bo)[CoDy]) and
the diagonal-point Dy := ([AoCo][BoDy|) are distinct. See fig. 7.1 for the final
sketch, i.e. we have already constructed all the necessary objects from the given
Points Ag, By, Co, Dgy. This step is relatively easy and there are no problems with
any of the controls.

Figure 7.1: A sample construction

We will first give the construction tree and will then explain the single steps:

The respective labels can be found on p. 42

Note the bold formulas in £2, € and in ¢, €%, which yield the contradiction.

In the following lists and in the figure not all formulas are mentioned, es-
pecially such formulas unnecessary for the construction are not listed. For the
construction tree compare with fig. 7.2. We can see, that the case-distinction
after D1 = Dy yields a contradiction in any branch, therefore we could deduce
with the construction that D; # Ds, since this formula is in all leafs, which are
not contradictious.

We will now give also a short description of what is happening in this tree:

41
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M° = { Ay, By, Co, Dy, [AoBo], ... }
EY = {AZ[AoBy), ... }
EY ={Ay # By, ..., AT[CoDy}
Q" ={Ay= Ay, ...,[ABo) = [AsBy],...}
al =" ([AoBo][CoDy])
M = { Ay, By, Cy, Do, [AoBo), - - -, ([AoBo][CoDo])}
&L = {AZ[AoBy), ..., ([ABo)[CoDo))I[AoBo), - .. }
EL = {Ay # By, ..., AJT[CoDo)}
Q' = Q" U{([AsBo][CoDy))}
a2= ([AoCo][BoDy))
M? = {Ay, By, Cy, Dy, [AoBo], . . ., ([AoBo][CoDo)), ([AoCo][BoDo])}
E2 = {AoZ[AoBy), . . -, ([AoBo][CoDo])Z[ Ao Bol, ([AoCo][BoDo))Z[AoCol, - - . }
E2 ={Ay # By, ..., AT|CoDy}
Q% = Q' U{([AoCy][BoDo))}
a3 = g = [AoByl, h := [CoDy), 1 := [AoCo],m := [ByDo|, D1 := (gh), Dy := (Im)
M3 = {Ay, By, Cy, Dy, g, h,l,m, Dy, Dy}
&% = {AoZg, BoZg, CoTh, DoIh, AyZl,CoZl, ByIm, DyIm, DiZg, DiZh, DyIl, DoyIm}
& = {CvIg, DoTIg, AoTh, BoTh, BoTl, DTl, AgIm, CoTm, Ay # Bo, ...}
QP ={Ay=Ay,....9=g,h=hl=1,m=m,D, = Dy, Dy = Dy}
ad = D = D,
&4 ={AoZg, BoZg, CoTh, DoTh, AvZl,CoZl, ByIm, DyIm, DiZg, DiZh, DZl, DiIm}
&Y = {CuTg, DoIg, AoTh, BoTh, BoTl, Do, AgTm, Com, Ay # By, ...}
Q*={Ay=Ao,....,9=9g,h=h,l=1,m=m,D, = D;,Dy = Dy, D; = Dy}
ab = g=1
& = {AZg, BoZg, CoTh, DyTh,CoZIg, BoIm, DyIm, D\Zg, DiTh, D;Im}
E° = {CoIg, DoTg, AoTh, BoTh, ByTg, DoIg, AgTm, CoTm, Ay # By, ...}
Q*={Ay=Ay,....g=g,h=h,l=1,m=m,Dy =Dy, Dy = Dy, D; = Dy, g =1}
ab = Ay = D,
£8 = {AoZg, BoZg, CoTh, DoTh, AoZl, CoZl, ByIm, DyIm, AgZh, AgZm}
ES = {CyTyg, DoIg, AoTh, BoTh, BoJl, DoTl, AgTm, Cofm, Ay # By, ...}
Q° ={Ay=Ay,....,9=g,h=h,l=1,m=m,D, = Dy, Dy = Dy, Dy = Dy, Ay = Dy, Ag = D5}
a7 = Dy # D,
E" = {AZg, ByZg, CoTh, DyTh, AyZl,CoIl, ByIm, DyIm, DiZg, DiTh, DyZl, DyIm}
E" = {CyIg, DoTg, AgTh, BoTh, BoTl, DyTl, AgIm, CoTm, Ay # B, ..., D1 # Dy}
Q7:{AO:Ao,...,g:g,h:h,lzl,mzm,Dl = Dy, Dy = D5}
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00
al
O1
a2
O2
a3

Figure 7.2: Construction Tree

The initial sketch is
M = {Aq, By, Cy, Dy, [AoBo), - .. }
Er = {AZ[AoBy), ..., DoZ[CoDol}
E- ={AT[BoCo), ..., Do[AoBo|}

After constructing the points D; and Dy and with the shortcuts [AgBy] = g,
[C()Do] = h, [A()O()] = l, [BQD[)] = m we obtain

M ={Ay, By,Cy, Do, g,h,l,m, Dy, Do, ...}

E, ={AZg, ByZg, CoZh, DyTh,
AgZl, CyTl, ByIm, DoIm,
D1Zg, D\Zh, DyIl, DyIm}

& ={CoTg, DoTg, AoTh, BoTh,
BoTl, DoTl, AgTm, CoIm,
Ag # By, ...}

We now want to add Dy # D,. For this purpose we identify D; and Dy and

put the new sets through the contradiction procedure. We will now follow the
single steps:

D2 — D1 (].)
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and as a consequence

DQIl = Dlﬂ
DQZm = lem

and so we get the critical constellation (Ag, D1;g,()
AoZg, AgZl, D1Zg, D17l

Inquiring the first solution g = [ yields
l—yg

and as a consequence

CoZl = CyLg
which is a contradiction to
CoIge &
Inquiring the second solution D; = Ay yields
Dy — Ay
and as a consequence
DiIm = AyIm
which is a contradiction to
AIm e &

44

(1.1)

(1.1a)

(1.1b)

(1.2)

(1.2a)

(1.2b)

Since these are all the critical constellations and a contradiction is derived for
each branch, the assumption that D; = D, is wrong and Dy # Dy can be added

to E_.

We will now give a proof in LpgK which corresponds to the above construc-
tion. The labels in this proof will not be the rules of LpgK, but references to

the above lines.

Hl .
(1.1)
g:l—iglil ;C’OIZ (1.1a)
J= =9 (1.1b)
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HQ .
(1)
(12) D1 = DQ — D1 = D2 — DQIm (1b)
A0:D1—>A0:D1 D1:D2—>D12'm (12&)
A0:D17D1:D2—>A0Im (1 2b) '
Ag=Dy,D, =Dy — '
Hg .
(1)
(1.1) D1 =Dy —» Dy =Dy — DoIl (1a) (1.1)

— ApZg — AoZl g=l—g=1 — DiIg Dy =Dy — D171 g=l—g=1

—g=1,40 = (g1) D1 =Dy —g=1,D1 = (gl)

D1 =Dy —g=1,A0= D1
Dy =Dy —-g=1IVAy=D;

I1; examines the branch when g = [, II; examines the branch when Ay = Dy,
and II3 deduces that either g = [ or D; = A under the assumption that Dy = D,
has to be true. The final proof is

§H3 g=1l— Ay=D, D, =Dy —
D1:D2—>g:l\/A0:D1 g:l\/A():Dl,DlzDg—)
D, =D, = (Cut)

From this example we can see that construction and proof are very similar
in this case. In the next section we want to prove the general result that any
construction can be transformed into a proof and vice versa.



Chapter 8

The Relation between Sketches
and Proofs

The aim of this chapter is the equivalence theorem, which states that proofs
and sketches are equivalent, i.e. that a proof can be translated into a sketch and
otherwise.

8.1 Translation from Construction to Proof

We will now start with a construction tree defined in sec. 6 and translate it into
a proof in LpgK. For this purpose we will define some notions used in this
translation: We will use Eﬂ, EY NV, ... for the root node of a tree.

DEFINITION 8.1 The set of assumptions of a construction tree T is a set As(7T)
of formulas with

o All formulas in EY which are not instances of mathematical azioms are
contained in As(T).

o All formulas in E° which are not instances of mathematical axioms are
contained in As(T).

o for any actionu =t inT, (u=t) € As
e for any action uZt in T, (uZt) € As
o for any actionu #t in T, (u#1t) € As
o for any action uTt in T, (ult) € As

The set of assumptions for a node N, denoted with As(N) is the set of all as-
sumptions from the root and all assumptions from actions uw =t and uZt above
the node N.

46
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For the following lemma we start with a rather trivial claim about the necessity
of name-changes.

CrAiM: If a construction deduces a fact, then there is also a construction without
the use of the actions P := (gh) and g := [PQ)], i.e. without a name-change,
deducing the same facts, when trivial substitutions are ignored. ]

The following lemma is the essential translation from construction trees to
LpgK-proofs:

LEMMA 8.1 (TRANSLATION LEMMA) For any nonempty subset A of formulas

of a node N in a construction without a name-change there is a proof in LpgK
of the sequent As(N) — A.

PROOF: The proof is an induction on the number n of vertices in the construction
above the node N.

Casen = 0: Take a formula A € A. Either A is an instance of a mathematical
axiom, then As(N) — A is a weakening of this axiom or A is in As(N) = As(7)
and then As(N) — A is a weakening of A — A.

Case n > 0: In the following discussion we will denote the last node with N,
its ancestor with N/ and the action leading from N’ to N with a. We will now
discuss the different possibilities of «:

a =“XY]": If A C N, then there is a proof of As(N’) — A and since
As(N') = As(N) also a proof for As(N) — A. If A ¢ N’ it must be XZ[XY]
or YZ[XY] contained in A and therefore As(N) — A is a weakening of the
mathematical axiom — XZ[XY] or — YZ[XY].

a =%(gh)”: This case is similar to “[XY7]”.
a =“{C}”: Since there are no new formulas this is trivial.

a =“t = u”: We will denote the set of formulas in N, from which the formulas
in A are generated by the substitution process with A’.

If A” C N’ then there is a proof of As(N') — A’. Since the substitution in the
sketch is carried out on all levels of the term depth we have to construct all these
terms. By first applying the rules (id-con:1), (id-con:2), (id-int:1), (id-int:2) we
can proof equalities for all the terms in which w is substituted for £. With this
equalities we can proof ¢t = u, As(N') — A, which is As(N) — A.

EXAMPLE: As an example take the tree starting with no additional assumptions
to that one about Ay, ..., Dy, followed by the action of constructing the intersec-
tion point ([AgBylg), then the action of assumption that this point incides with
s, i.e., ([AoBolg)Zs and finally substituting h for [AgBp]. In the leaf we get the
formula (hg)Zs. As(N') = {([AoBo]g)Zs}, As(N) = {([AoBo]g)ZLs, [AoBo] = h}.
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Take the following proof:
[A()Bo] =h— [A()Bo] =h

[AoBo] = h — ([AoBolg) = (hg) ([AoBolg)Zs — ([AoBolg)Ts
As(N) — (hg)Zs

Q
If A" ¢ N’ then t = u must be in A. Then As(N) — A is a weakening of the

logical axiom t = u — t = u.

a =“tZu”: If A C N’, then there is a proof of As(N’) — A and by weakening
with tZu we get a proof of As(N) — A. If A ¢ N’, then tZu must be in A and

therefore As(N) — tZu is a weakening of the logical axiom tZu — tZu, since
(tZu) € As(N).

a = #u": If A C N’', then there is a proof of As(N’) — A and by weakening
with ¢ # u we get a proof of As(N) — A. If A ¢ N’ then t # u must be in A
and therefore As(N) — t # u is a weakening of ¢t # u — ¢ # w, which is easily
deduced from t =u — t = u.

a =“tTu”: If A C N’, then there is a proof of As(N’) — A and by weakening
with tTu we get a proof of As(N) — A. If A ¢ N’, then tJu must be in A and
therefore As(N) — tJu is a weakening of tJu — tJu, which is easily deduced
from tZu — tZu.

This completes the proof. O

We now want to show that for all the formulas a construction deduces there is
a proof of certain assumptions — formula. The certain assumptions are not
all the formulas in As(7), since in this set there are usually a lot of case-
distinctions and solutions for critical constellations. So we will define a set of
essential assumptions, which should contain the assumptions really made, and a
set of case-assumptions which contain only those assumptions, which are used for
case-distinction.

DEFINITION 8.2 The set eAs(T) of the essential assumptions contains the fol-
lowing formulas:

o All formulas in EY which are not instances of mathematical azioms are
contained in eAs(T).

o All formulas in E° which are not instances of mathematical axioms are
contained in As(T).

o [f there is a node N and a vertex labeled with P(t,u) and this is the only
vertez from N, then P(t,u) € eAs. (Note that P(t,u) can be t = u,t #
u, tZu, tTu)



CHAPTER 8. THE RELATION BETWEEN SKETCHES AND PROOFS 49

The set cAs(T) of case-assumptions contains all formulas which are labeled to
vertices leading from a mode with critical constellations and all those formulas
P(t,u) such that there is a node N with two vertices, one labeled with P(t,u) and
the other labeled with —=P(t,u) (P € {Z,=}).

We will denote with cAs(N) for a node N all the formulas from cAs(T) which

are above N.

EXAMPLE: (continued from sec. 7) For the given construction As(7) = {D; =
Dy, Dy # Do,g = 1, Ag = D1,...} where the dots stand for the assumptions of
the initial sketch, which are nothing else than the axiom (PG3).

The set eAs(7) consists only of the formulas in Ny, the assumptions of the
initial sketch. The set cAs(7") consists of the formulas Dy = Dy, Dy # Dy, g =
l, Ay = D;. The set of case-assumptions for the node N, consists only of D; = Ds.
The set of case-assumptions of node Ny consists of Dy = Dy, g = 1. Q

We will now give the essential lemma for translating a construction into a
proof:

LEMMA 8.2 For any given construction 7 and any node N in it, we can give a

proof of
eAs(T), cAs(N) —

if all branches below N end with a contradiction and
eAs(T), cAs(N) — A

for any set A of formulas, such that for each A € A there is a not contradictious
leaf under N, such that A € N.

This lemma essentially erases all the assumptions in the proof generated from
the translation lemma, which come from case distinctions and distinctions after
critical constellations, which are below the node N. This is intuitively easy to
understand, since for such a distinction either the one case or the other case must
happen and therefore both the subtrees below N realizing this distinction prove
the corresponding facts without this distinction.

Proor: We will prove this lemma by induction on the number N of vertices
below N. We will denote a vertex leading from N with o and the node it leads
to with V.

Case n = 0: If the node N is contradictious, then there is either a formula
P(t,u), such that P(t,u) and =P(t,u) are in N. From lemma 8.1 we get proofs
Py of As(N) — P(t,u) and P, of As(N) — —P(t,u). An easy transformation
of P, gives us a proof P of P(t,u),As(N) — and with the cut rule a proof of
As(N) —. By weakening and exchange we get eAs(7),cAs(N) —.

If the node is contradictious and there is no such formula, then there is
a formula ¢t # ¢t in N. Again from the translation lemma we get a proof
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P of As(N) — t # t. An easy transformation of P gives us a proof P’ of
t = t,As(N) — and by cutting with the axiom — ¢ = t we get a proof of
As(N) —. By weakening and exchange we get eAs(7),cAs(N) —.

If the node N is not contradictious we get, again by the translation lemma, a
proof of As(N) — A and by weakening and exchange a proof of

eAs(7),cAs(N) — A

Case n > 0: The proof is relatively simple. If there is only one successor
of the node N, say N’, and the action is not a substitution, then there is no
distinction. By induction hypothesis we get a proof of eAs(7),cAs(N') — A
which is nothing else then eAs(7),cAs(N) — A, maybe weakened by a formula.

The other cases, i.e. if there is more than one successor or the substitution,
we will now discuss. We will denote the successors of N with N’ (and N” if
necessary).

a =“t = u”: We will denote the set of formulas which arise from A by carrying
out the substitution [t/u] with A’.

e There is no other vertex leaving from N: By induction hypothesis we get a
proof of eAs(7),cAs(N’) — A’. By applying the same construction as de-
scribed in the proof of the translation lemma, but in the opposite direction
(not substituting ¢ for u, but u for t) we get a proof of eAs(7 ), cAs(N) — A,
since t = u € eAs(7).

e There is another vertex from N to N” labeled with ¢ # u: Then by in-
duction hypothesis there are proofs P of eAs(7),cAs(N') — A" and P, of
eAs(7),cAs(N”) — A. From the construction given above we get a proof
of Py of t = u,eAs(7T),cAs(N) — A.Take the following proof:

7,
f—u—t—u eAs(7),cAs(N") — A Py
—t#ut=u t#uecAs(T),cAs(N) = A t=u,eAs(T),cAs(N)— A
—t#uVt=u t#uVt=u,eAs(7),cAs(N) — A

eAS(T), cAs(N) — A (Cut)

This is possible since t # u € cAs(N").

e There is another vertex from N to N” labeled with ¢ = h. Then there is a
critical constellation (t,wu;g,h) or (g,h;t,u) in N. Let t =: P, U =: @Q for
convenient reading. From induction hypothesis and the above construction
there are proofs P, of P = Q,eAs(T),cAs(N) — A and a proof P, of
g = h,eAs(7),cAs(N) — A. Since in N there is a critical constellation
from the translation lemma we get proofs Sy, Se, T1, Ty for As(N) — PZyg,
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As(N) — PZh, As(N) — QZg, As(N) — QZh, respectively. Take the
following proof:

1 1L,
eAs(7T),cAs(N) = g=hVP=0Q P=QVg=h,eAs(T),cAs(N) — A (Cut)
eAs(T), cAs(N) — A "
where II; :
e © S, T LT
As(N) —tZg As(N) —>tITh g=h—g=h As(N)— QIg As(N) - QIZh g=h—g=h
As(N) — g = h,t = (gh) As(N) = g=h,Q = (gh)
AS(N)—»g:h,tZQ
As(N) - g=hVP=Q
eAs(7T),cAs(N) - g=hVP=Q
and Il :
A P,
P=0Q,eAs(7T),cAs(N) - A g=h,eAs(T),cAs(N) — A
P=QVg=h,eAs(T),cAs(N) — A
a =“t #£ u”: This case is dual to the case t = u, part 2.
a =“tZu”: This case is similar to the case t = u, part 2.
a =“tTu”: This case is dual to tZu.
This completes the proof. O

The final theorem is only an application of the above lemma:

THEOREM 8.1 If a construction T deduces a set A, then there is a proof in
LpcK of the sequent
eAs(T) — A

Proor: Take as node N for the lemma the root of the construction 7 and we

get a proof of
eAs(T),cAs(N) — A

but since cAs(N) = () this is a proof of

eAs(7) — A
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8.2 Translation from Proof to Construction

In this section we want to show that any proof can be translated into a construc-
tion. But since a construction and a proof handle identities differently, we will
take care of consequences of identities.

The first lemmas will operate only on the (atom)-part of a proof, as de-
scribed in sec. 5 and will show that all such parts can be coded in a construction
(sec. 8.2.1). The reducing from a general formula to this part will be done in 8.2.2.

8.2.1 Translation for the (atom)-part of a proof

LEMMA 8.3 For any cut-free proof Il in LpgK of a sequent I' — A, where I’
and A consist only of atomic formulas, there is a construction, which deduces a
subset of T U A.

Furthermore we can say that any leaf, which is not contradictious, will yield
only one formula of the subset.

Note that if a subset can be deduced, the whole sequent is a direct consequence
of the subset by weakening.

PROOF: The proof is an induction on the number n of prooflines in the proof II.
We will first give some general remarks on the transformation.

(i) We will start with a sketch with no assumptions, i.e. only with the for-
mulas expressing the axiom (PG3). As constants we will take beside the given
Ag, ..., Dy all the constants occurring in the proof which has to be transformed.

(ii)) Then we will build up a tree, which is a construction cum grosso modo,
but will not be consistent in substitutions, in other words, by carrying the action
of identifying ¢t and u, we will not cut ¢ from the set M, as given in the description
of the actions. So we can use t later again. Furthermore there will be nodes in
the new tree, which are contradictious but do have successors. We will refer to
this kind of tree as the term preconstruction.

(iii) Any of the given trees, say 7, will start with a part, where all the terms
necessary in the proof are constructed. In this part no case distinction can arise,
but a splitting into a distinction by a critical constellation is possible anyway, if
a term used in the proof describes the same object as any other term. For an
example take the term ([AgBo|[AoCo]) and Ay itself. To avoid such situations, we
will in a first step substitute inherent equal terms with their minimal form, i.e. we
will substitute z for ([xy][zz]) or [(zy)(zz)] (where [zy] can be [yz] and similar)
in the whole proof. This yields a set of terms which do not inherently describe
the same objects. We will assume that, when we append one construction onto
another, then the new construction starts with a part constructing the terms
necessary for both constructions, followed by the other actions of the first tree
and followed by the other actions of the second tree.
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(iv) The principle of the transformation is that we start with no assump-
tions and for every logical axiom we make a case distinction. Since the rules
of the calculus don’t generate more formulas from the axioms we get one and
only one formula in the endsequent as consequence for any combination of posi-
tive/negative parts of the logical axioms. This will happen in the proof, too. In
each node, which is not contradictious there will be only one formula, which will
be equivalent to a formula in the sequent.

(v) Finally we will give a transformation making a real construction from a
preconstruction described in (ii) which proves the same sequent.

So let us start with a proof, in which the transformation given in (ii) about
inherent equal terms are already carried out. For such a proof we will show the
lemma.

Case n = 1: The proof is an axiom. We start with constructing the necessary
terms. If the axiom is mathematical, then the sequent consists only of one formula
and this formula is in the last £, which has been constructed. If the axiom is a
logical one, then we will make a case distinction. On the one side there will be
—=P(t,u) in & and in T, on the other side there will be P(t,u) either in £, and
Az orin @ and A_.

Case n > 1: We must now scrutinize all the rules of LpgK, which can be used
to construct a (atom)-part. That are the weakening-rules, the exchange-rules,
the contraction-rules, the equality-rules and the mathematical rules (Erase) and
(PG1-ID). For the first three of them the proof is easy: By induction hypothesis
there is a construction for the above sequent. Take the same construction for the
lower one. What remains are the equality and the mathematical rules. In the
following we will refer to the lower sequent as S, to the left upper as S; and to
the right upper as S,. By induction hypothesis there are preconstructions 7; and
7, for Sy and S,, respectively.

If 7; also prove the sequent without the main formula, i.e. the formulas which
are identified in the listing of the rules in sec. 4.3, then 7; can be used as precon-
struction for the lower sequent, too. So in the following we will assume that in
the preconstructions of S; and S, the main formulas are essential, i.e., they are
contained in a leaf, which is not contradictious. We can also assume that there
is only one such leaf, as this is proved by the induction, too. This nodes we will
refer to as Ny and Ns.

For the rules (id-Z,,:left), (id-Z,, right), (id-Z,,:left), (id-Z,, :right) the proce-
dures are the same: There is exactly one node for the main formula in the sequent
Ss, onto this node we hang on the tree 7; for the left upper sequent. In the node
Ny there is the main formula of Sy, say P(s,u). In the node N; of the composed
tree, which is a leaf, there is the main formula for S}, say s = ¢. This substitution
is carried out anywhere in the tree and in the node N; of the composed tree the
set @y, contains s = t. If the formula P(s,u) from Ny becomes P(s',u') in Ny
by some substitutions, there is s = s’ and u = %’ in Qy,, and combined with
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s = t there is, since the sets @) are closed under equality rules, t = s’ in Qp,,
and therefore P(s',u’) =q,, P(t,u), which is necessary that the combined tree
proves P(t,u).

For the rules (trans:left) and (trans:right) the system is the same like above,
but this time the set (), gives the necessary formulas.

For the rules (symm:left) and (symm:right) the preconstruction from the up-
per sequent is taken.

For the rules (id-con:1), (id-con:2), (id-int:1), (id-int:2) the preconstructions
from the upper sequent are taken. Since this terms are already constructed at
the top of the tree (c.f. (iii) above) the identity is already in Q.

Finally we must discuss the mathematical rules (Erase) and (PG1-ID). The
construction for the upper sequent of (Erase) surely doesn’t prove e.g. A¢Z[ByCo],
because if this formula is in &, , this leaf is contradictious and therefore isn’t
discussed further on. For (PGI-ID) there are preconstructions 7;, 7, and 73
for the sequents I' — A, PZg, I' — A, QZg and P = Q,I' — A, respectively.
The corresponding last nodes are ;. First we make the term-part, where all
the terms are constructed and add to this one the construction of [PQ]. Then
we put 77 after the node Ny of 75 and this tree again after the node N3 of 73.
Since the last action above N; must generate the formula PZg, in this node
there will be a critical constellation (P, Q;[PQ],g) (or any other term, which is
already substituted for [PQ]). This is the case because in the first part of the
construction all the terms are already built. The distinction into cases for this
critical constellation is P = @) and [PQ)] = ¢. But in the node N3, and therefore
also in all subsequent nodes, there is a variant of P # ) in £_. Therefore the
vertex leading from Nj labeled with P = @) yields a contradiction. So the only
new leaf contains the formula [PQ] = ¢ in its @Q-part and therefore proves the
lower sequent.

To complete the proof of the lemma we must give a transformation of a
preconstruction into a construction preserving the property of what it deduces.
We read the preconstruction from the root. When we come to a substitution,
we carry it out in the whole subtree below this vertex and updating all the sets
() in this subtree. After this pass we read the whole construction from the root
again and if we come to a node which is contradictious, then we delete the whole
subtree under this node. After this parse we obtain a construction. Why does
this construction preserve the property of what it deduces?

First note that there are less or equal leafs which are not contradictious. So
no essential new formulas are derived which have to be in the sequent proved.
Further note that if a formula A was in a leaf N and equivalent w.r. to Qy
to B and B in I' — A, and the formula has changed by some substitutions,
the respective equalities are contained in the set () and therefore also the new
formula A’ is equivalent w.r. to Qy to B. This yields a construction for a subset
of TUA. So we have a construction which deduces the sequent I' — A. a
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8.2.2 Reduction of a general formula to sequents with
atomic components

We start from a sequent containing only one formula to the right which is in
prenex normal form and the matrix in conjunctive normal form

— (Q121) ... (Quan)Alty, .. ., ty)

This is no loss of generality, since any sequent can be transformed in such a
formula.

From Herbrand’s theorem! we get a disjunction of instances of the matrix of
this formula, which is, with some knowledge on the sequence of instantiations,
equivalent to the original formula.

k

=\ A@,....1)

i=1
This formula can be brought into conjunctive normal form:

n

NLiv.. VL

i=1
The next step backward in the proof is the solving of the conjunction into several
sequents with disjunction formulas, i.e. we get n sequents of the form
— LiV...V L,
This sequents can easily be reduced to sequents without the connective V and
further by bringing all the negative literals to the left side, we get a sequent
r—A

where all the formulas in I' and A are atomic. So a construction of I' — A yields
a construction for ' 4

— LiV...V L,
and n such constructions yield a proof by construction for the sequent

n

NLiv...vL

=1

which is equivalent to the sequent

Lor the midsequent theorem
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The construction for this sequent together with the knowledge on the sequence
of instantiations yield a proof for the original sequent

— (Q121) ... (Qnan)Alty, .., th)
So we can state the final theorem

THEOREM 8.2 For any proof in LpgK there is a set of constructions such that
the constructions deduce this sequent.



Chapter 9

Closing Comments

We hope that this first analysis of projective geometry from a proof-theoretic
point of view opens up a new interesting way to discuss features of projective
geometry, which is widely used in a lot of applied techniques. Especially the
fact, that the sketches drawn by geometers have actually the same strength as
the proofs given in a formal calculus, puts these constructions in a new light.
Till now they were considered as nothing more then hints to understand the
formal proof by exhibiting you the incidences. But they can be used as proves
by themselves.

There are some ways to extend the calculus LpgK to deduce more complex
facts, i.e. expressions dealing with functions and predicates. For this purpose
we will consider higher order logic systems. We will now present some of them
already developed.

9.1 Other Calculi

During this thesis we considered some other calculi for projective geometry. One
of the first attempts was a calculus with restricted second order properties. The
reason was that we want to speak about functions and theorems on them since
lot of the theorems in projective geometry are really theorems in meta-projective
geometry, i.e. theorems about the structure of the objects in the projective ge-
ometry.

This calculus had quantors for the types constructed only from the primitive
types, i.e. quantors for the type [r,...,7, — 7| with 7,7 € {7p, 72 }. It was also
necessary to introduce an operator on functions which realizes the composition
of the functions, in other words, it was necessary to introduce a case-distinction
as a special term:

f(z) if z =a,
g(z) if z #a.

o7
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This calculus has the property that already a lot of real life projective geom-
etry, i.e., also theorems about projective geometry, can be carried out in it.

Another calculus considered for first order logic is a variant of the presented
and differs only in the fact, that there are no types. To identify points and lines
there are special predicates P(x) and £(z) which are true when z is a point or a
line. Furthermore there are certain axioms on these predicates stating that the
corresponding sets build a partition of the universe. With this predicates there
is in any proven theorem a prefix identifying the variables.

(Ve ) (37, V) (Y )

becomes
(Vo) (L(z) D (3y)(P(y) A yTx))

Although this calculus has the advantage of having only one type, the sentences
are more complex and error-prone.

9.2 What to do?

There are a lot of interesting directions further investigations can explore.

The discussion of the various calculi is one of them. Then we can extend the
formulization of the construction to the using of more complex lemmas. Fur-
thermore it is interesting to discuss the fact that the axioms imply a one-to-one
function between the points and the lines and so that any given model has exactly
the same number of points and lines. This is something like categoricity, but in
another sense than the usual one.

The various interpolation theorems, which can be also applied to the calculus
LpcgK, and the discussion of Beth’s definability theorem will yield interesting
consequences on projective geometry and the way new concepts are defined in
projective geometry.

Finally it will be fascinating to set up an automatic theorem proving facility
based on the calculus LpgK.



Appendix A

The Euclidean Axioms for Affine
Geometry

A.1 Definitions

1.
2.
3.

10.

11.
12.

13.

A point is that which has no part.
A line is breadthless length.

The extremities of a line are points.

. A straight line is a line which lies evenly with the points on itself.

A surface is that which has length and breadth only.
The extremities of a surface are lines.
A plane surface is a surface which lies evenly with straight lines on itself.

A plane angle is the inclination to one another of two lines in a plane which
meet one another and do not lie in a straight line.

And when the lines containing the angle are straight, the angle is called
rectilinear.

When a straight line set up on a straight line makes the adjacent angles
equal to one another, each of the equal angles is right, and the straight line
standing on the other is called perpendicular to that on which it stands.

An obtuse angle is an angle greater than a right angle.
An acute angle is an angle less than a right angle.

A boundary is that which is an extremity of anything.

29
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14.

15

16.
17.

18.

19.

20.

21.

22.

23.

A figure is that which is contained by any boundary or boundaries.

A circle is a plane figure contained by one line such that all the straight
lines falling upon it from one point among those lying within the figure are
equal to one another.

And the point is called the centre of the circle.

A diameter of the circle is any straight line drawn through the centre and
terminated in both directions by the circumference of the circle, and such
a straight line also bisects the circle.

A semicircle is a figure contained by the diameter and the circumference
cut off by it. And the centre of the semicircle is the same as that of the
circle.

Rectilinear figures are those which are contained by straight lines, trilateral
figures being those contained by three, quadrilateral those contained by
four, and multilateral those contained by more than four straight lines.

Of trilateral figures, an equilateral triangle is that which has three sides
equal, an isosceles triangle that which has two of its sides alone equal, and
a scalene triangle that which has its three sides unequal.

Further, of trilateral figures, a right-angled triangle is that which has a
right angle, an obtuse-angled triangle that which has an obtuse angle, and
an acute-angled triangle that which has its three angles acute.

Of quadrilateral figures, a square is that which is both equilateral and
right-angled; an oblong that which is right-angled but not equilateral; a
rhombus that which is equilateral but not right-angled; and a rhomboid
that which has its opposite sides and angles equal to one another but is
neither equilateral nor right-angled. And let quadrilaterals other than these
be called trapezia.

Parallel straight lines are straight lines, which, being in the same plane and
being produced indefinitely in both directions, do not meet one another in
either direction

A.2 The Postulates

1.
2.

3.

To draw a straight line from any point to any point.
To produce a finite straight line continuously in a straight line.

To describe a circle with any centre and distance.



APPENDIX A. THE EUCLIDEAN AXIOMS FOR AFFINE GEOMETRY 61

4. That all right angles are equal to one another.

5. That, if a straight line falling on two straight lines make the interior angles
on the same side less than two right angles, the two straight lines, if pro-
duced indefinitely, meet on that side on which are the angles less than the
two right angles.

A.3 The Common Notions

1. Things which are equal to the same thing are also equal to one another.
2. If equals be added to equals, the wholes are equal.

3. If equals be subtracted from equals, the remainders are equal.

4. Things which coincide with one another are equal to one another.

5. The whole is greater than the part.



Appendix B

Hilbert’s Axioms for Euclidean
Plane Geometry

B.1

Group I — Axioms of Connection

. Through any two distinct points A, B, there is always a line m.

. Through any two distinct points A, B, there is not more than one line m.

On every line there exists at least two distinct points. There exists at least
three points which are not on the same line.

Through any three points, not on the same line, there is one and only one
plane.

B.2 Group II — Axioms of Order

1.

If point B is between points A and C, then A, B, C are distinct points on
the same line, and B is between C' and A.

For any two distinct points A and C, there is at least one point B on the
line AC' such that C'is between A and B.

If A, B, C are three distinct points on the same line, then only one of the
points is between the other two.

DEFINITION B.1 By the segment AB is meant the set of all points which
are between A and B. Points A and B are called the end points of the
segment. The segment AB is the same as segment BA.

(Pasch’s Axiom) Let A, B, C be three points not on the same line and let
m be a line in the plane A, B, C', which does not pass through any of the
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points A, B, C. Then if m passes through a point of the segment AB, it
will also pass through a point of segment AC' or a point of segment BC.

B.3 Group III — Axzioms of Congruence

DEFINITION B.2 By the ray AB is meant the set of points consisting of
those which are between A and B, the point B itself, and all points C' such
that B is between A and C'. The ray AB is said to emanate from point A.

A point A, on a given line m, divides m into two rays such that two points
are on the same ray if and only if A is not between them.

DEeFINITION B.3 If A, B, C' are three points not on the same line, then
the system of three segments AB, BC, C' A and their endpoints is called the
triangle ABC. The three segments are called the sides of the triangle, and
the three points are called the vertices.

1. If A and B are distinct points on line m, and if A’ is a point on line m’ (not
necessarily distinct from m), then there is one and only one point B’ on
each ray of m’ emanating from A’ such that the segment A’B’ is congruent
to the segment AB.

2. If two segments are each congruent to a third, then they are congruent to
each other.
(from this it can be shown that congruence of segments is an equivalence
relation; i.e, AB = AB; if AB = A'B’, then A’B' = AB; and if AB = CD
and CD = EF| then AB = EF.)

3. If point C' is between A and B, and point C’ is between A’ and B’, and if
the segment AC' = segment A’C’, and the segment C'B = segment C'B’,
then segment AB = segment A’'B’.

DEFINITION B.4 By an angle is meant a point (called the vertex of the
angle) and two rays (called the sides of the angle) emanating from the point.

If the vertex of the angle is point A and if B and C' are any two points
other than A on the two sides of the angle, we speak of the angle BAC or
CAB or simply of angle A.

4. If BAC is an angle whose sides do not lie on the same line and if in a given
plane, A’B’ is a ray emanating from A’, then there is one and only one ray
A’C’ on a given side of line A’B’, such that /B’A’'C" =2 /BAC. In short, a
given angle in a given plane can laid off on a given ray in one and only one
way. Every angle is congruent to itself.
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DEeFINITION B.5 If ABC' is a triangle then the three angles BAC, CBA,
and ACB are called the angles of the triangle. Angle BAC is said to be
included by the sides AB and AC' of the triangle.

5. If two sides and the included angle of one triangle are congruent respectively
to two sides and the included angle of another triangle, then each of the
remaining angles of the first triangle is congruent to the corresponding angle
of the second triangle.

B.4 Group IV — Axiom of Parallels (for a
plane)

1. (Playfair’s postulate) Through a given point A not on a given line m there
passes at most one line, which does not intersect m.

B.5 Group V — Axioms of Continuity

1. (Axiom of measure or the Archimedean axiom) If AB and C'D are arbitrary
segments, then there exists a number n such that if segment C'D is laid off
n times on the ray AB starting from A, then a point E is reached, where
n-CD = AF, and where B is between A and E.

2. (Axiom of linear completeness) The system of points on a line with its order
and congruence relations cannot be extended in such a way that relations
existing among its elements as well as the basic properties of linear order
and congruence resulting from Axioms I-III, and V-1 remain valid.
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